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Abstract

Text-to-speech (TTS) and Speech-to-Text (STT) technologies have seen significant
improvements in recent years with the introduction of Deep learning-based data-driven
approaches, yet the application of these technologies to child speech presents unique
challenges. Most current research work and solutions focus largely on adult speech
compared to child speech. The main reason for this disparity can be linked to the limited
availability of children’s speech datasets and poor data quality that can be used in training
modern speech Atrtificial Intelligence (Al) systems. Child speech datasets often have noisy
recordings and lack diversity, resulting in limited, poor quality and less representative
datasets for developing effective solutions. Child speech is also notably different from adult
speech due to distinctive linguistic and phonetic characteristics, alongside variations in
pitch, articulation, and pronunciation. These differences present substantial challenges in
the development of effective TTS and STT systems for children. Moreover, ethical
considerations and GDPR compliance necessitate careful handling of child speech data,
emphasizing the need for legally compliant data collection methods. The shift to DNN and
Al-based systems has improved the capacity to train on limited child speech data.
Nevertheless, the availability of data remains a challenge, especially when striving to
represent the linguistic and phonetic patterns of children from diverse backgrounds.

Our research focuses on several key areas: the enhancement of TTS and STT technologies
for child speech in a low-resource scenario, the creation and augmentation of child speech
datasets, and the integration of these technologies into practical applications such as smart
toys capable of interacting with and comprehending children. We explore state-of-the-art
(SOTA) methodologies, including the development and optimization of Tacotron 2 and
Fastpitch models for child speech synthesis, and the application of wav2vec2, Whisper,
and Conformer models for improved child speech recognition. Through the utilization of
advanced data augmentation methods, it is also aimed to overcome the limitations posed
by the scarcity of child speech data. Additionally, our work contributes to the broader field
by developing a facial animation pipeline and creating synthetic-speaking children,
addressing both technological and ethical considerations in child speech processing. The
main goal of this research is to not only advance the state of child speech technologies but
also to ensure their ethical and effective application in smart toys. This comprehensive
study represents a significant step forward in the field of speech technology, particularly in
making TTS and STT systems more accessible, representative, and effective for child
users. By addressing the unique challenges associated with child speech and leveraging the
latest advancements in Al and deep learning, we contribute to the development of more
interactive, engaging, and supportive technological solutions in this area of research.
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CHAPTER 1 1

Chapter 1

Introduction

In the field of speech technology, two pivotal areas are Automatic Speech Recognition
(ASR) and Text-to-Speech (TTS) systems. These technologies, crucial in bridging human-
computer interaction, face unique challenges when adapted for child speech [1], [2]. This
introduction aims to elucidate the intricacies of ASR and TTS as they pertain to child
speech, highlighting both the challenges and the opportunities in this subfield.

ASR technology, designed to convert spoken words into text, encounters specific
challenges when dealing with child speech [3], [4]. Children's speech is inherently different
from adults' due to various factors such as their vocal tracts are smaller, leading to higher
pitched and less articulated speech; their language skills are in developmental stages,
resulting in varied vocabulary usage and sentence structures; and their speech patterns are
more dynamic and less predictable [5], [6], [7], [8], [9], [10], [11]. These distinctions
require an ASR system that can accurately interpret and transcribe children's speech,
overcoming the limitations of traditional models predominantly trained on adult speech.

Conversely, TTS systems, which generate spoken language from text, must be adept at
producing speech that sounds natural to children. This involves not just mimicking the
pitch or tone of a child’s speech, but also understanding and replicating the nuances and
simplicity inherent in the way children speak and process language [12], [13]. The
development of child-centric TTS systems has significant implications, especially in
educational and entertainment contexts, where engaging and understandable audio content
is crucial [14].

This thesis addresses a critical and often overlooked aspect of speech technology: the
challenges and opportunities presented by child speech, particularly treating it as a low-
resource language within the domain of ASR and TTS systems. Child speech is markedly
different from adult speech, characterized by its unique phonetics, fluctuating rhythm, and
dynamic tonal variations. These characteristics not only pose significant challenges for
conventional ASR and TTS systems, which are predominantly trained and optimized for
adult speech patterns but also highlight the lack of focused research and resources
dedicated to this demographic, akin to the issues faced by low-resource languages.

The primary focus of this research is to bridge this gap by building on the existing ASR
[15], [16], [17], [18] and TTS technologies [19], [20], [21] and adapting them for child
speech. This involves recognizing child speech as a distinct category, requiring dedicated
research attention similar to that given to low-resource languages. The lack of substantial
and diverse datasets for child speech further compounds these challenges, mirroring the
obstacles faced in developing technologies for languages with limited digital resources.
Through this lens, the thesis explores innovative methodologies and advanced deep
learning methodologies to enhance the performance of speech technologies in accurately
recognizing and synthesizing child speech. By improving the capabilities of ASRand TTS
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systems in handling child speech, this research aims to unlock new potentials in educational
technology, interactive learning tools, and child-centric applications. The adaptation of
ASR and TTS technologies for child speech is not merely a technical challenge; it
represents a significant step towards making digital technologies more accessible and
beneficial for younger users [22], [23]. This introduction sets the stage for a deeper
exploration into the specific challenges, methodologies, and impacts of ASR and TTS
technologies in the domain of child speech.

It is also interesting to note that Speech-to-Text (STT), which is closely related to ASR,
represents a specific implementation of ASR technology. ASR refers to the process of
converting spoken language into text using machine learning algorithms to recognize and
transcribe the audio input. STT, on the other hand, is a specific application of ASR where
the recognized text is displayed or used for further processing, such as in voice-controlled
interfaces or transcription services. While both ASR and STT involve the conversion of
speech to text, ASR is the underlying technology that powers speech recognition
capabilities, whereas STT emphasizes its integration with other applications or devices. In
the context of this thesis, | will use the terms ASR and STT interchangeably, as the
distinction is not crucial for the specific discussion at hand.

1.1 DAVID Project

The Data Center Audio/Video Intelligence on Device (DAVID) project [24] was a
collaboration between XPERI?, Soapbox Labs?, and the University of Galway? funded
by Enterprise Ireland* (EI) under the Disruptive Technologies Innovation Fund (DTIF). Its
main objective was the development of a multimodal (sound and vision) Al processing
platform with low cost and low power consumption to be used for the creation of voice-
enabled toys. The DAVID smart-toy platform is outlined as one of the pioneering Edge-Al
platform designs that integrates advanced, low-power neural inference models for data
processing directly alongside image or audio sensors. This innovative platform includes
the capability for on-device text-to-speech generation. The platform is equipped with a
speech-driven interface and utilizes its computer vision sensor node to recognize and
interpret user interactions and facial expressions. Embedded (on-device) processing of data
is currently the preferred solution across the smart toy industry to enable Artificial
Intelligence in smart toys [25], [26], [27].

The project aimed to refine XPERI and SoapBox Labs' technologies for the Smart Toy
market, introducing new, child-specific innovations. The University of Galway contributed
by developing neural-based TTS and child speech understanding technology, customizable
to different voices, and enhancing existing Al solutions for intelligent toys. The University
worked towards improving several state-of-the-art technologies reliant on data-center-level
Al. Figure 1 shows the image of the ‘DAVID’ teddy bear prototype.

L https://xperi.com/

2 https://www.soapboxlabs.com/

3 https://www.universityofgalway.ie/

4 https://www.enterprise-ireland.com/en/
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Figure 1: DAVID Smart-toy Prototype.

The Ergo Al processor, developed by Perceive, a subsidiary of Xperi, is designed to run
data center-class neural networks in power-constrained environments. This makes it highly
suitable for a wide range of applications in edge devices, where power efficiency is crucial.
The Ergo chip by Perceive is notable for its ability to deliver high-level inferencing
capabilities at ultra-low power, catering to the growing demand for smart, power-efficient
devices in various sectors. It is aimed to utilize this chip as a part of the DAVID project to
make the toy alive. Its efficiency in running advanced neural networks with low power
consumption makes it ideal for edge devices like a smart teddy. More details about the
DAVID smart toy platform and Ergo chip are present in our published work in Appendix
H.

| began my academic journey as a Research Assistant at the University of Galway,
primarily contributing to the development of TTS and ASR technologies with a focus on
child speech, as detailed in this thesis. My involvement in various research areas, and the
motivations driving these pursuits, are elaborated upon in subsequent chapters. The
DAVID project, in particular, was a significant turning point. Within a year of engaging
with this project, | discovered a deep-seated passion for research, which led me to transition
into a full-time PhD program. This decision was largely influenced by my experiences and
the insights gained during my tenure as a Research Assistant, signalling a commitment to
advancing the field of speech technology. Therefore, | enrolled at the University of Galway
as a PhD student with the aim to further improve speech technologies, particularly focusing
on the nuances of child speech and the challenges associated with it. This pursuit was not
just an extension of the DAVID project, but a deeper commitment to advancing the field
of speech technology, driven by a desire to make meaningful contributions to an area rich
with potential for innovation and impact.

1.2 Overview of the Main Contribution to This Thesis

The following present the core contributions of this thesis which are summarized in the
below sub-sections. In the remaining chapters of this thesis, the work related to these
contributions is presented. In each chapter, an introductory paragraph provides the context
of the research work. Following that, the research objectives of the work are given,
followed by the contributions of the presented research work. In the course of this thesis,
we have significantly contributed to the academic community through the authorship of
five journal papers and five conference papers. Detailed information regarding these
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publications can be found in Section 1.4. For a comprehensive review and further study,
the complete texts of these papers are provided in the Appendix. This thesis makes several
novel scientific contributions that have been explored in various research efforts. It
explores the fundamental aspects of how and why child speech differs from adult speech,
providing crucial insights for understanding the unique considerations needed in speech
technology development for children. The thesis also analyses existing child speech
datasets, discussing the processes involved in cleaning and preprocessing them, and
addresses the development of an application designed for the collection of child speech
data. The thesis presents one of the first published works dedicated to generating child
speech in low-resource settings, leveraging state-of-the-art TTS methodologies, and
developing novel validation methodologies. Additionally, it details advancements in ASR
technologies for child speech, with the results outperforming any previously obtained on
the same datasets and also improves on unseen native and non-native English child speech
datasets. Furthermore, the thesis focuses on the development of synthetic child speech
datasets and augmentation methodologies, providing valuable insights into the distinct
characteristics that differentiate adult and child speech. These datasets are also released
publicly for research use. Finally, the thesis highlights additional contributions, including
the organization of a special session and collaboration with industry partners, as well as the
creation of innovative pipelines for animating facial landmarks and generating synthetic-
speaking children.

1.2.1 CONTRIBUTION TOWARDS CHILD SPEECH DATASET CREATION

Chapter 3 of this thesis is dedicated to advancing the creation of datasets specifically
tailored for child speech research. This chapter thoroughly explores the various challenges
inherent in dealing with child speech. It begins by delving into the fundamental aspects of
child speech, emphasizing how and why it significantly differs from adult speech. This
exploration is crucial for understanding the unique considerations needed in speech
technology development for children.

The chapter then transitions to an in-depth analysis of the child speech datasets that are
currently available and utilized in this project. It discusses the processes involved in
cleaning and preprocessing these datasets to make them conducive for training in ASR and
TTS systems. This section not only outlines the technical steps but also reflects on the
intricacies and nuances involved in preparing child speech data for technological
applications. Additionally, the chapter addresses the development of an application
designed for the collection of child speech data. This part of the chapter details the design
considerations, functionalities, and the overall importance of such an application in the
broader context of speech technology research. This application plays a pivotal role in
enhancing the quality and quantity of child speech data, which is essential for the continued
development and refinement of ASR and TTS technologies for young users.

1.2.2 CONTRIBUTION TOWARDS IMPROVING CHILD SPEECH

GENERATION

Chapter 4 of this thesis presents an in-depth examination of the TTS methodologies
employed within this research, focusing on state-of-the-art (SOTA) technologies like
Tacotron 2 [28] and Fastpitch [21]. This chapter outlines the development of a transfer
learning pipeline specifically designed for child speech synthesis in low-resource settings.
Significantly, this research represents one of the first published works dedicated to
generating child speech in such scenarios. In this chapter, two key publications detailing
our work on Tacotron 2 [29] and Fastpitch [30] are discussed. The primary objective was
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to investigate and adapt cutting-edge TTS methodologies for child speech synthesis. The
research involved a comprehensive exploration of various TTS solutions, with a concerted
effort to modify and optimize these systems for child-specific TTS applications.

Furthermore, the chapter delves into the novel subjective and objective validation
methodologies that were developed as part of this research. These methodologies are
essential for the accurate evaluation of the synthesized child speech, ensuring the quality
and effectiveness of the TTS models. The validation processes not only assess the technical
performance of the TTS systems but also gauge their effectiveness in realistically
replicating the nuances of child speech.

1.2.3 CONTRIBUTION TOWARDS IMPROVING CHILD SPEECH

RECOGNITION

Chapter 5 of the thesis is dedicated to detailing the advancements made in ASR
technologies, tailored for child speech. This chapter provides a deep exploration of three
principal ASR methodologies: wav2vec2 [17], Whisper [18], and Conformer [16]. The
focus here is not only on the theoretical underpinnings of these models but also on their
practical applications in the domain of child speech recognition. A significant portion of
the chapter is devoted to a comprehensive series of experiments and a comparative analysis
conducted between these models using a variety of child speech datasets. This resulted in
the four publications as documented in references [31], [32], [33] and [34]. These
experiments were meticulously designed to maximize the efficacy of training with these
models, aiming to offer deep insights into their performance across different child speech
datasets, including both seen and unseen datasets.

Moreover, the chapter engages in a thorough discussion of the findings from these
experiments, extracting key takeaways and lessons learned. The insights gained from these
analyses are instrumental in understanding how ASR technologies interact with child
speech, highlighting both the strengths and limitations of current methodologies. In
addition to presenting the immediate results of the research, this chapter sets a solid
foundation for future work in the field. It establishes a baseline for the ongoing
development and refinement of ASR technologies for child speech, ensuring that
subsequent research can build upon the substantial work already accomplished.

1.2.4 CONTRIBUTION TOWARDS CHILD SPEECH AUGMENTATION

METHODOLOGIES

In Chapter 6, the focus is on the development of synthetic child speech datasets and the
application of augmentation methodologies for transforming adult speech into child
speech. This chapter delves deeply into the processes and techniques involved in creating
these synthetic and augmented datasets, which are significant outcomes of this research.
The chapter not only details the technical aspects of dataset creation but also discusses how
these newly developed resources have been made accessible to the wider research
community, facilitating further studies in the field.

Additionally, the chapter engages in a thorough discussion on both subjective and objective
evaluations of the augmented datasets. These evaluations are crucial for assessing the
quality and efficacy of the synthetic speech, ensuring that it is a viable resource for research
and practical applications. Through this analysis, the chapter provides valuable insights
into the distinct characteristics that differentiate adult and child speech, particularly in
terms of speaker embedding features. This exploration into the nuances of adult versus
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child speech adds a layer of depth to our understanding of speech characteristics across
different age groups.

1.2.5 ADDITIONAL CONTRIBUTIONS

Chapter 7 highlights the additional contributions made as a part of this thesis. | have
collaborated with my PhD colleagues and Xperi Engineers (DAVID project) on different
research publications. We first discuss our contribution towards the special session
‘Research Advances in Child Speech Technologies’ which was presented at the SpeD 23
conference ! at the University Politehnica of Bucharest, Romania, organized by my
supervisor Peter Corcoran and myself. Additionally, my contribution towards the DAVID
project is provided which focused on the integration of TTS and STT technologies onto the
Ergo platform. This task involved collaborating with Xperi's engineering teams across
Ireland and the USA, encompassing a range of expertise from engineering to linguistics
and product management. | also worked towards the creation of an innovative pipeline for
animating facial landmarks in sync with speech, aimed at enhancing automated dubbing
with a fellow PhD Student. Lastly, | worked with other PhD students on creating a
comprehensive approach for making synthetic-speaking children, combining techniques in
face generation, speech synthesis, and facial animation.

1.3 List of Publications

1.3.1 CONTRIBUTION TOWARDS IMPROVING TEXT-TO-SPEECH

TECHNOLOGIES FOR CHILDREN

In this section, one journal and one conference paper have been published. A copy of the
published papers is attached in Appendix A and Appendix D of this thesis report.

1. R. Jain, M. Y. Yiwere, D. Bigioi, P. Corcoran and H. Cucu, "A Text-to-Speech
Pipeline, Evaluation Methodology, and Initial Fine-Tuning Results for Child
Speech Synthesis," in IEEE Access, vol. 10, pp. 47628-47642, 2022, doi:
10.1109/ACCESS.2022.3170836.

2. R. Jain and P. Corcoran, "Improved Child Text-to-Speech Synthesis through
Fastpitch-based Transfer Learning,” 2023 International Conference on Speech
Technology and Human-Computer Dialogue (SpeD), Bucharest, Romania, 2023,
pp. 54-59, doi: 10.1109/SpeD59241.2023.10314899.

1.3.2 CONTRIBUTION TOWARDS ENHANCING CHILD SPEECH

RECOGNITION

This section will list publications related to ASR improvement for children, which include
two journal papers and two conference papers. A copy of the published paper is attached
in Appendix B, Appendix C, Appendix E and Appendix F of this thesis report.

3. R. Jain, A. Barcovschi, M. Y. Yiwere, D. Bigioi, P. Corcoran and H. Cucu, "A
WAV2VEC2-Based Experimental Study on Self-Supervised Learning Methods to
Improve Child Speech Recognition,” in IEEE Access, vol. 11, pp. 46938-46948,
2023, doi: 10.1109/ACCESS.2023.3275106.

! https://sped.pub.ro/
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4. Jain, R., Barcovschi, A., Yiwere, M., Corcoran, P., Cucu, H. (2023) Adaptation of
Whisper models to child speech recognition. Proc. INTERSPEECH 2023, 5242-
5246, doi: 10.21437/Interspeech.2023-935.

5. A. Barcovschi, R. Jain and P. Corcoran, "A comparative analysis between
Conformer-Transducer, Whisper, and wav2vec2 for improving the child speech
recognition,” 2023 International Conference on Speech Technology and Human-
Computer Dialogue (SpeD), Bucharest, Romania, 2023, pp. 42-47, doi:
10.1109/SpeD59241.2023.10314867.

6. R. Jain, A. Barcovschi, M. Yiwere, P. Corcoran, and H. Cucu, ‘Exploring Native
and Non-Native English Child Speech Recognition with Whisper’, IEEE Access,
pp. 1-1, 2024, doi: 10.1109/ACCESS.2024.3378738.

1.3.3 CONTRIBUTION TOWARDS CHILD SPEECH DATA AUGMENTATION

METHODOLOGIES AND VALIDATION

This section lists publication for data augmentation and synthetic data methodologies. This
led to one journal paper contribution highlighted in Appendix G of this report.

7. M. Y. Yiwere, A. Barcovschi, R. Jain, H. Cucu and P. Corcoran, "Augmentation
Techniques for Adult-Speech to Generate Child-Like Speech Data Samples at
Scale.," in IEEE Access, doi: 10.1109/ACCESS.2023.3317360.

1.3.4 OTHER CONTRIBUTIONS

This section will list the work done as additional contributions during my PhD program. A
copy of the published paper is attached in Appendix H, Appendix I, and Appendix J of this
thesis report.

8. D. Bigioi, H. Jordan, R. Jain, R. McDonnell and P. Corcoran, "Pose-Aware Speech
Driven Facial Landmark Animation Pipeline for Automated Dubbing,” in IEEE
Access, vol. 10, pp. 133357-133369, 2022, doi: 10.1109/ACCESS.2022.3231137.

9. G. Cosache, F. Salgado, R. Jain, C. Rotariu, G. Sterpu and P. Corcoran, "Data
Center Audio/Video Intelligence on Device (DAVID) - An Edge-Al Platform for
Smart-Toys," 2023 International Conference on Speech Technology and Human-
Computer Dialogue (SpeD), Bucharest, Romania, 2023, pp. 66-71, doi:
10.1109/SpeD59241.2023.10314915.

10. M. Ali Farooq, D. Bigioi, R. Jain, W. Yao, M. Yiwere and P. Corcoran, "Synthetic
Speaking Children — Why We Need Them and How to Make Them," 2023
International Conference on Speech Technology and Human-Computer Dialogue
(SpeD), Bucharest, Romania, 2023, pp. 36-41, doi:
10.1109/SpeD59241.2023.10314943.

1.4 Contribution Taxonomy

Due to the fact that this publication-based thesis contains collaborative effort, this section
gives an outline of the primary factors that identify primary authorship. The CRediT
approach has been adopted by journals in several fields to specify the contributions of
individual authors. In the CRediT Taxonomy, all authors’ contributions are measured as a
percentage point on 14 roles. These are Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project administration, Resources,
Software, Supervision, Validation, Visualization, Writing — original draft, Writing — review
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& editing. Despite collaborations, most of the work in this thesis is my own; hence, a more
compact generalization of this taxonomy that contains the primary criteria has been
selected. To be more specific:

1. Research Hypothesis/ Idea.

2. Methodology comprises validation, data creation, formal analysis, instrument
selection, software development, implementation, and experiments.

3. The background includes investigation, formalization, and work done to place the
research efforts in a broader context of literature in a given field; this may include
some aspects of writing (literature reviews) and informs aspects of project
administration and supervision, as well as ensuring that the methodology employed
is typical of that used in the area of publication.

4. Manuscript preparation which includes all aspects of writing manuscript
preparation including Writing — the original draft, Writing — review & editing, and
Visualization except those specified in the next criteria.

This generalization has the weakness that it ignores most aspects of funding, project
administration, resources or supervision but otherwise encapsulates the main points that
would determine primary authorship. Such a table will be presented in each main work
presented in this Thesis, attributing the contribution of each author to the aforementioned
four criteria. Contribution percent is listed at a resolution of %. The authors and co-authors
are listed by initials where RJ means Rishabh Jain, MY means Mariam Yiwere, DB means
Dan Bigioi, PC means Peter Corcoran, AB means Andrei Barcovschi, HC means Horia
Cucu, MAF means Mohammad Ali Farooq and GC means Gabriel Costache. This process
is similar for any other additional co-authors in the paper. This taxonomy is provided at the
start of each Appendix highlighting the author’s contribution towards each of those papers.

1.5 Thesis Structure

The rest of the thesis structure is as follows.

Chapter 2 presents the evolution of speech technology, specifically TTS and ASR, tracing
their development from early methods to advanced neural models.

Chapter 3 focuses on the creation and importance of child speech datasets for TTS and
ASR enhancement. It discusses the scarcity of such datasets, the complexities in their
collection and use, and the methodologies for data cleaning and pre-processing. It also
discusses the application developed for child speech data collection.

Chapter 4 details the advancements in TTS for child speech, particularly through the
development and optimization of Tacotron 2 and Fastpitch models within a transfer
learning framework. Further details of these contributions are detailed in journal
publications 1 [29] and journal publication 2 [30] listed in section 1.3.

Chapter 5 explores enhancing ASR technologies for child speech, using models like
wav2vec? for self-supervised learning and comparing their effectiveness with other models
such as Whisper and Conformer models. Further details of these contributions are detailed
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in journal publications 3 [31], 6 [34] and conference publications 4 [32], 5 [33] listed in
section 1.3.

Chapter 6 addresses the generation of synthetic child speech datasets, showcasing how
these datasets, created using techniques like adult-to-child speech augmentation, aid in
finetuning ASR models and contribute to child speech research. Further details of these
contributions are detailed in conference publications 2 [30] and journal publication 7 [35]
listed in section 1.3.

Chapter 7 outlines additional contributions to the DAVID project and related research,
including collaborations on integrating TTS and ASR technologies for smart toys,
developing audio features for facial animation, and highlighting significant advancements
in creating synthetic-speaking children. It highlights the research work done in
collaboration with the industry partner, colleagues and other PhD students [24], [36], [37].

Chapter 8 outlines the main conclusions and future work based on the work contained in
this thesis.
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Chapter 2

Introduction to Speech Technology

This chapter provides a comprehensive overview of the evolution and fundamental
workings of Text-to-Speech (TTS) and Speech-to-Text (STT) technologies. Initially, it
delves into the historical progression of TTS, tracing its development from early synthesis
methods to contemporary advanced models. Similarly, the evolution of STT is explored,
highlighting the significant milestones from its inception to the sophisticated systems used
today. The chapter then shifts focus to the core principles and mechanisms underlying TTS
and STT technologies, offering a detailed understanding of how these systems convert text
to speech and vice versa. Special attention is given to the workings of specific TTS models,
namely Tacotron 2 [28] and Fastpitch [21], which are utilized in this work. These models
represent the forefront of TTS technology, and their operational intricacies are crucial for
comprehending their application in speech synthesis in this thesis. The chapter also
examines STT models used in this research, including wav2vec?2 [17], Whisper [18], and
Conformer [16]. By dissecting the functionalities of these state-of-the-art STT models, the
chapter provides insight into the latest developments in the field of ASR.

2.1 Synergy between Speech-To-Text and Text-To-Speech

The synergy between STT and TTS systems lies in their complementary nature, where
improvements in one can directly influence advancements in the other [1], [38], [39], [40].
These technologies are intrinsically linked through their shared goal of facilitating natural
human-computer interaction and their underlying technologies. When considering child
speech, the synergy between ASR and TTS becomes particularly crucial due to the unique
challenges posed by limited data availability and the distinct characteristics of child speech
(will be discussed in detail in Chapter 3). The TTS systems can synthesize childlike speech
to create diverse datasets. This is especially useful where collecting large volumes of
natural child speech is challenging due to ethical and logistical considerations [41].
Generated speech data can encompass various accents, dialects, and speech patterns,
contributing to a more robust training set for child-specific ASR systems. On the other
hand, ASR systems can be used to transcribe child speech in educational settings, speech
therapy, or interactive learning applications. Transcriptions generated by ASR provide
valuable data for linguistic research and the development of child-specific language
models.

Upon initiating our research on child speech, it became apparent that the research domain
was experiencing a scarcity of datasets comprising child speech (discussed in more detail
in Chapter 3), which are critical for various speech recognition and synthesis projects.
Originally, our research endeavoured to engineer a TTS system, specifically for integration
with the DAVID platform which will be able to provide controllable child speech synthesis
[42], [43]. Confronted with the dual challenges of dataset paucity and the prevalence of
unannotated child speech collections, our investigative trajectory shifted toward an
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exhaustive examination of ASR technology with a particular focus on child speech
patterns.

As our exploration into ASR for child speech deepened [3], it became increasingly evident
that there exists considerable potential for advancement in this specialized ASR domain.
Such enhancements have the dual benefit of enriching the transcription of child speech
corpora and, by extension, augmenting the performance and accuracy of TTS systems [38],
[44]. This symbiotic enhancement is pivotal, as it promises to yield more comprehensive
and representative child speech datasets, thereby significantly contributing to the broader
research ecosystem within this specialized field.

The interplay between ASR and TTS addresses the critical issue of data scarcity in child
speech research. By using TTS to augment existing datasets and ASR to generate new
transcriptions, researchers and developers can overcome the hurdle of limited child speech
data. This synergy enables the development of more effective, accurate, and inclusive
speech technologies tailored for children, fostering advancements in educational
technology, speech therapy, and child-centric applications [45], [46]. For this reason, we
decided to tackle the issues of both TTS and ASR linked with child speech to improve
overall child speech understanding using Al-based development.

2.2 Evolution of Text-To-Speech

The historical development of speech synthesis has seen a shift from early attempts using
parametric synthesis methods, such as Wolfgang von Kempelen's [47] machine in 1971, to
the introduction of Kilatt's serial/parallel formant synthesizer [48] in 1980. The DECtalk
text-to-speech system [49] in 1990 improved speech quality with the Pitch Synchronous
OverLap Add (PSOLA) algorithm [50]. However, challenges persisted, leading to the
exploration of advanced models like the Hidden Markov Model (HMM)-based [51], [52]
and Deep Learning (DL)-based [13] synthesis methods.

Traditional speech synthesis involves two main approaches: concatenative TTS and
parametric TTS [53]. Concatenative synthesis [54] concatenates pre-recorded speech units
to form a continuous stream, with schemes like LPC-based and PSOLA-based methods.
The former preserves speech information but lacks natural flow, while the latter addresses
prosody control issues. Parametric synthesis [53] leverages digital signal processing to
simulate the vocal process, offering various methods like vocal organ and formant
parametric synthesis, HMM-based [55], and DNN-based synthesis [12]. The Statistical
Parametric Speech Synthesis (SPSS) employs three modules: text analysis, parameter
prediction, and speech synthesis. It utilizes linguistic features to enhance naturalness and
quality, demonstrating significant improvements in experimental results.

Deep Learning (DL) has revolutionized the speech synthesis [12], departing from HMM-
based methods. Deep BLSTM-based models, utilizing Bidirectional Long Short-Term
Memory networks, and sequence-to-sequence (seg2seq) networks have shown remarkable
efficiency in mapping linguistic features to acoustic features [12]. The end-to-end speech
Synthesis methods integrate text analysis, acoustic modelling, and speech synthesis into a
unified framework, eliminating the need for extensive domain expertise and minimizing
errors. Neural TTS emerged as a paradigm shift, employing neural networks as the
backbone for speech synthesis. Early models like WaveNet [56] and DeepVoice 1/2 [57],
[58] integrated neural networks into SPSS components. End-to-end models like Tacotron
1/2 [19], [28], Deep Voice 3[59], FastSpeech 1/2 [60], [61], and EATS [38] streamlined
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text analysis and directly generated waveforms from text. Neural network-based synthesis
offers superior voice quality, intelligibility, and naturalness while reducing human pre-
processing and feature development requirements. This was a summary of the evolution of
TTS, however, this [13] interesting article can be referred to for more details.

The journey of speech synthesis has progressed from early parametric methods to
sophisticated deep-learning models, achieving remarkable strides in naturalness,
intelligibility, and overall speech quality. Recent models like Tacotron 2 and Fastpitch
showcase state-of-the-art advancements, emphasizing end-to-end synthesis and efficient
parallel computation. For this reason, they were also considered as primary TTS models to
be used for child speech synthesis in this research work. This will be discussed in more
detail in section 2.4.

2.3 Evolution of Speech to Text

In 1952, Bell Laboratories introduced the "Audrey" system [62], marking an early effort in
recognizing spoken numbers. The 1960s saw progress fueled by digital signal processing
(DSP) and pattern recognition algorithms [62]. The 1970s brought about the influential
"Hidden Markov Model" (HMM) [63], as outlined by Lawrence R. Rabiner in 1989, setting
the stage for modern ASR systems. Advancements in neural networks [64], [65] during the
1990s and 2000s laid the foundation for large vocabulary systems, while the 2010s
witnessed breakthroughs with deep learning techniques like convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). Big data and cloud computing further
empowered ASR systems, leading to consumer applications like virtual assistants. The
emergence of models like Listen, Attend and Spell (LAS) from Carnegie Mellon University
[66] and Deep Speech 2 [67] from Baidu in 2015 showcased the power of encoder-decoder
architectures and deep learning in achieving state-of-the-art performance.

RNN-Transducer (RNN-T) [68], [69], introduced transformer and transducer architectures,
respectively, achieving top-tier performance. The year 2020 brought wav2vec2 [17] by
Meta Al Research !, utilizing self-supervised learning with a CNN architecture.
Conformer’s [16], [70] marked a new era with a conformer architecture and streaming
attention mechanism for real-time, efficient speech recognition. In 2022, OpenAl’s? release
of Whisper [18] added a noteworthy contribution to ASR, providing open-source models
ranging from tiny to large, further diversifying the landscape of speech-to-text technology.
Looking ahead, recent models such as wav2vec 2, Whisper and Conformer are pushing the
boundaries of ASR. These models represent the ongoing innovation and diversity in the
field of Al-based speech recognition. Due to their outstanding performance with adult
speech datasets, they are also used for improving the child speech ASR in this thesis.

2.4 Neural Text-To-Speech Technologies

The basic architecture of a Neural TTS system (see Figure 2) involves three main
components:

! https://ai.meta.com/research/
2 https://openai.com/
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Figure 2: Key Components of neural Text-To-Speech.

1) Text Encoding module: This component converts the input text into a numerical
representation that can be processed by the deep neural network. Common techniques
used in text encoding include word embeddings, character embeddings, and RNNSs.

2) Acoustic model: This component generates the acoustic features of speech, such as
pitch, tone, and spectral envelope, based on the encoded text. The acoustic model
typically employs a deep neural network, such as a CNN or an RNN, to predict the
acoustic features from the text encoding. The features provide a time-frequency
representation of the audio waveform, like a spectrogram.

3) Vocoder: This component converts the acoustic features produced by the acoustic
model into a digital audio signal that can be played back as speech. The vocoder
typically uses a waveform generator network, such as a Griffin-Lim algorithm [71] or
a WaveNet [56], which takes in the spectrogram as input and produces a waveform that
closely matches the original speech signal.

2.4.1 SELECTION AND EVALUATION OF THE TTS MODEL

In our comprehensive exploration of TTS technologies, we delved into the latest
advancements and research in the field to identify the most effective and efficient solutions
[13]. Originally, the goal was to identify TTS models that were compact, compatible with
PyTorch, easy to implement, and suitable for deployment on edge devices. Additionally,
there was a focus on developing methodologies to adapt these models for effective use with
child speech.

2.4.1.1 Acoustic Model Selection (Mel Spectrogram Synthesizer)

The emergence of the Tacotron [19] represented a paradigm shift in the field of speech
synthesis, significantly elevating the quality of synthesized speech. Despite the advent of
newer methodologies boasting enhanced efficiency and smaller model architectures,
Tacotron continues to be a serving as a benchmark for quality assessment in comparison to
emerging techniques. In the course of our research, we conducted an extensive exploration
of various cutting-edge TTS models including Tacotron. We performed an in-depth
analysis of various state-of-the-art systems and methodologies mentioned in Table 1. From
our preliminary evaluation of TTS models, we divided the models based on the following
categories: Number of parameters, Model Type (Autoregressive/Non-autoregressive),
potential to work on Ergo chip, Speech quality and Pytorch implementation availability.
The utilization of the Pytorch framework was imperative for our objectives, as it was
compatible with Xperi’s proprietary training framework for porting models over to edge
devices. Table 1 presents a detailed summary of this comprehensive exploration.

Table 1: Initial Exploration of TTS Models [72]

Number of | Type of Potential to Speech Qualit
TTS Models Parameters l\)//lgdel Work on ERGO P Ranl?ing Y
Tacotron 2 [28] 29 M AR Likely 2
Deep Voice 3 [59] 7M AR Likely 7
TransformerTTS [73] |24 M AR Likely 1
Flowtron [74] 61 M AR Unlikely 8
Paranet [75] 17 M NAR Very Likely 6
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FastSpeech [60] 23 M NAR Very Likely 5
FlowTTS [76] NA NAR Unknown NA
FastSpeech 2 [61] 2T M NAR Very Likely 3
Glow-TTS [77] 28.6 M NAR Very Likely 4

M=Millions, AR=Autoregressive, NAR=Non-Autoregressive.

Table 1 presents a comprehensive exploration of various TTS models, and the ranking was
carefully determined based on multiple factors. Firstly, we ensured that only models with
publicly accessible implementations were included in the table. The availability of public
implementations allowed for transparency and reproducibility, enabling us to evaluate each
model's performance and characteristics. We also engaged with the TTS community,
including developers, researchers, and users, to gather their insights, experiences, and
subjective evaluations of the listed models. Ranking these models accurately is challenging
because they vary in training data, duration, and computing resources. Therefore, we only
assessed the audio quality of sample outputs from the models’ GitHub repositories. We
listened to and analysed the synthesized speech, taking into account factors such as
naturalness, clarity, and overall intelligibility. Community feedback also played a pivotal
role in our ranking process such as going through code reviews, issues, and discussions.
Table 1 was developed during the initial phase of our research, and we acknowledge that
numerous updates and variations have likely been introduced since then. The ranking
provided in Table 1 is based on evaluations of sample outputs, literature reviews, and
community feedback, and it is open to revision. We encourage readers to consider Table 1
as a starting point and to refer to the latest advancements and updates.

These models predominantly supported single-speaker synthesis and therefore we focused
on training these TTS models using the single-speaker LJ Speech dataset [78]. This initial
training phase was crucial in establishing a baseline understanding of the models'
capabilities and limitations. We selected the models which looked promising for further
training with child speech. Despite the theoretical promise of these models, the
experimental results did not meet our expectations when applied to TTS, particularly with
child speech. One key issue is that these models are heavily dependent on large, diverse
training datasets to capture the full range of phonetic and prosodic features present in
natural speech. Child speech, with its unique characteristics and variations, presents an
even greater challenge, as the models must learn from a significantly smaller and less
varied dataset compared to adult speech. Common challenges included the lack of
naturalness in speech synthesis, difficulties in capturing the emotional subtleties of speech,
and the inability to effectively replicate unique speech patterns, such as those found in child
speech. Additionally, many systems struggled with the accurate pronunciation of
uncommon words and names, and the adaptability to different languages and dialects when
used with child speech.

During our research, we also came across variations in TTS models with multispeaker
capabilities such as Deep Voice 2 [57]. The development of DeepVoice 2 marked a
significant advancement, integrating speaker verification models to facilitate multispeaker
TTS synthesis [20], [79], [80], [81], broadening the scope of TTS applications. The
methodology proposed by DeepVoice 2 can be incorporated with other TTS models such
as Tacotron 2, WaveNet, and more recent innovations like DeepVoice 3 [59] or VITS [82].
These models incorporate variational autoencoders and attention mechanisms, among other
techniques, to learn the subtleties of multiple speakers' voices within a single framework.
This discovery was pivotal, as it aligned more closely with our objective of enabling TTS
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for child speech. The introduction of these multispeaker-capable models [20], [80], [83]
significantly expanded our research scope and prompted a shift in our approach.

Consequently, we undertook a comprehensive review of TTS models, taking into account
various factors as described in Table 2. These included the number of parameters, the type
of model, speech quality, multi-speaker compatibility, and real-time processing capability,
along with each model's specific advantages and disadvantages. The intricacies involved
in tailoring these models to accurately represent child speech became a more pressing and
fundamental goal, taking precedence over their immediate implementation on Edge
devices. Therefore, It was decided to adapt the TTS model for child speech synthesis as the
primary focus. Consequently, this led to an adjustment in focus, with less emphasis being
placed on Ergo compatibility for the time being. This decision was also influenced by the
parallel efforts of Xperi engineers, who were concurrently working on optimizing TTS
models for Edge devices.
Table 2: Review of TTS Models

Model Para- | Model | Multi- Real- Advantages Disadvantages
meters | Type | speaker | Time

Tacotron [19] ~28.2M | AR Yes Slow Pioneer in Slower, less
end-to-end robust
TTS

Tacotron 2 [28] | ~29M AR Yes Slow Improved over | Still slower
Tacotron inference

Deep Voice 2 ~30M AR Yes Medium | Good for Lower quality

[57] multispeaker | than newer
TTS models

Deep Voice 3 ~20M AR Yes Medium | Better voice Outperformed

[59] quality than by newer
Deepvoice2 models

Transformer ~44M AR No Slow High-quality Very resource-

TTS [73] voice intensive

Flowtron [74] ~61M AR Yes Slow Flexible voice | Very large
style model size

Paranet [75] ~17M NAR No Fast Fast, Lower
lightweight naturalness

Fastspeech [60] | ~23M | NAR | No Fast Faster than Compromised
autoregressive | audio quality

Fastspeech 2 ~23M | NAR No Fast Improved Complex

[61] quality over training pipeline
Fastspeech

Flow-TTS [76] | NA NAR No Medium | Quality similar | Large, complex
to Flowtron model

Glow-TTS [77] | ~29 M | Flow- | Yes Fast Good balance | Requires

based of speed and finetuning

quality

SpeedySpeech | ~30M | NAR | Yes Fast Very fast, Compromises

[84] efficient on quality

VITS [82] ~30M | AR Yes Medium | State-of-the- Very resource-
art quality intensive

Fastpitch[21] | ~30M | NAR | Yes Fast Fast, high- Requires high-
quality quality training

data

M= Millions, AR= Autoregressive, NAR= Non-Autoregressive.
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After thorough evaluation and experimentation, we found that Tacotron 2 [28], particularly
when adapted for child speech, outperformed other models in several key areas. Tacotron
2's neural network architecture demonstrated superior ability in generating more natural-
sounding and expressive speech. Its strength lies in its end-to-end generation capability,
which simplifies the speech synthesis process and enhances the overall quality of the
output. Specifically, when applied to child speech (more in Chapter 4), Tacotron 2
effectively captured the unique tonal and articulatory characteristics that are typically
challenging for conventional TTS systems. The model also benefits from its extensive
open-source codebase with an active research community, continuously working on
innovations and variations of the model such as the multispeaker adaptation of Tacotron 2.
Given its robust performance and adaptability, Tacotron 2 was chosen as the primary
technology for our research into child speech synthesis and it also provides a baseline for
future research.

Further, we also used the Fastpitch [21] model for our main experiments. It was after we
started working with Fastspeech 2 [61] that we came across Fastpitch. The introduction of
Fastpitch effectively addressed a notable limitation in Fastspeech 2: its inability to support
multiple speakers. Fastpitch distinguished itself primarily through its exceptional pitch
control capabilities, a feature crucial for accurately capturing the unique pitch variations of
child speech. Moreover, FastPitch excelled in speech synthesis speed and efficiency,
addressing one of the key limitations of Tacotron 2. The addition of features such as pitch
control, speed, expressiveness, efficiency and self-attention mechanism solidified Fastpitch
as our model of choice for child speech synthesis, significantly elevating the quality and
realism of our synthesized speech outputs. This will be highlighted in more detail in
Chapter 4.

2.4.1.2 Vocoder Model Selection (Waveform Generation)

Our exploration of vocoders did not involve extensive training. When evaluating their
performance with child speech spectrograms, we observed consistent behaviour across
most models. Our primary goal was to identify a universal vocoder [85], [86], [87], [88],
capable of effectively handling both adult and child speech. Therefore, a specific criterion
for the selection of the optimal vocoder was employed, taking into account various factors
like Parameters, Model Type, Universal Vocoding Capabilities, and Real-time
Capabilities, as well as their respective advantages and disadvantages. A detailed overview
of this selection process is presented in Table 3.

Table 3: Review of Vocoder Models

Vocoder Parameters | Model Real- | Universal | Advantages | Disadvantages
Type Time | Vocoder

WaveNet | ~4.6 M AR No No High-quality | Very slow

[56] speech inference,
synthesis computationally

intensive

WaveRNN | ~4 M RNN Yes | Yes Good balance | Less natural

[85] of quality and | than WaveNet
efficiency

Parallel ~46 M NAR Yes | No Faster than Complex

WaveNet WaveNet, training process

[89] high quality

WaveGlow | ~87.9 M Flow Yes | Yes High-quality | Large model

[90] speech, fast size, intensive
inference training
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MelGAN | ~4.26 M GAN Yes | Yes Fast, Quality lower
[91] lightweight, than WaveNet

suitable for
real-time
applications
LPCNet ~1M RNN Yes | Yes Efficient for | Quality is not
[92] real-time on par with
applications, | larger models
low
computational
load
Griffin- NA Algorithm- | Yes | Yes Simple, no Lower quality
Lim [71] based training compared to
required neural vocoders
HiFi-GAN | ~13.9M GAN Yes | Yes High fidelity, | Requires
[93] efficient for careful tuning
real-time to avoid
applications artifacts

M= Millions, AR= Autoregressive, NAR= Non-Autoregressive, RNN= Recurrent Neural Network, GAN= Generative
Adversarial Networks

WaveNet [56], with its superior audio quality, sets a high benchmark in the field but is
limited by its slow processing speed, which hinders its suitability for real-time applications.
Parallel WaveNet improves upon this with enhanced processing efficiency while
maintaining high-quality output. WaveRNN [85] and LPCNet [92] offer a balanced
approach, with the former providing a compromise between audio quality and processing
efficiency, and the latter leaning towards real-time application suitability due to its lower
computational demands. On the efficiency frontier, MelGAN [91] and HiFi-GAN [93]
excel with incredibly fast inference and smaller model sizes, though they slightly
compromise on audio quality compared to their more computationally intensive
counterparts. These characteristics make them ideal for real-time and resource-constrained
environments.

WaveGlow [90] and WaveRNN [85] emerged as the optimal choices of vocoder models,
a decision that was influenced by a combination of key factors. Primarily, these models
demonstrated superior performance in preserving the distinct characteristics of child
speech. The evaluation process involved passing child speech spectrograms through the
vocoders and subjectively assessing the quality of the audio waveforms generated.
WaveGlow offered the most natural-sounding voice among the tested vocoders. Its swift
inference speed was commendable, but its extensive memory requirement, marked by a
large parameter size, presented challenges for integration with memory-constrained
devices like ERGO. WaveRNN also emerged as a favourable choice for a vocoder due to
its balanced attributes. It adeptly combines high-quality audio output with computational
efficiency, making it ideal for a range of applications, including those with limited
processing power. WaveGlow's natural-sounding voice synthesis and WaveRNN's
efficient yet quality-oriented performance, coupled with their ease of implementation and
universal vocoding capabilities made them an ideal choice for our research. The chosen
vocoders were also favoured due to their compatibility and ease of integration with acoustic
models such as Tacotron 2 and Fastpitch. This aspect of the research, focusing on the
synergy between vocoders and acoustic models will be discussed in greater detail in the
subsequent sections of this chapter.
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2.4.2 TACOTRON 2 WITH WAVERNN

Tacotron 2 [28] is a neural network architecture designed for TTS synthesis, employing a
recurrent sequence-to-sequence (seg-to-seq) feature prediction approach. This model
transforms input text characters into embedded sequences through natural language
processing (NLP) tools [94], utilizing a recurrent sequence-to-sequence feature to predict
Mel spectrogram sequences. The Mel spectrum is employed as a visual representation of
audio data in the time-frequency domain, where the bins correspond to pitch classes. The
model generates a time-domain waveform from the Mel spectrum using a modified version
of the WaveNet [56] architecture. This involves performing an inverse Fourier Transform,
converting data from the time-frequency domain to the time-power domain. The use of two
distinct acoustic representations facilitates separate training of these components. The
architecture of Tacotron 2 can be seen in Figure 3. In Tacotron, mel-spectrograms are
computed through a short-time Fourier transform with a 50ms frame size and a Hann
window function, which smoothens frequencies for a more visually coherent waveform.
This pre-processing aids network analysis and prediction while optimizing processing
efficiency. The two acoustic representations are then fed into a neural network comprising
an encoder and a decoder. The encoder translates character sequences into a hidden feature
representation, and the decoder utilizes this representation to predict a spectrogram. The
decoder functions as an autoregressive recurrent neural network, predicting a Mel
spectrogram frame by frame from the encoded input sequence. Tacotron 2 also employs an
attention mechanism to allow the decoder to focus on different parts of the input sequence
as it generates the output, improving the model's ability to capture long-range
dependencies.

Waveform
Samples

WaveNet
MoL

Mel Spectrogram

5 Conv Layer ) i
| Post-Net I ®— :
A

y
2 Layer 2LST™M
Pre-Net Layers

Location
Sensitive
Attention

Input Text Character 3 Conv Bidirectional
P Embedding Layers LSTM

Figure 3: Architecture of Tacotron 2 [28].
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We use the WaveRNN vocoder [85], which is an improvement over the WaveNet
architecture employed with Tacotron 2. WaveRNN uses a Gated Recurrent Unit (GRU) in
comparison to convolutions used in WaveNet. The input melspectrograms and their
corresponding waveforms are segmented at each timestamp. The resulting output
synthesizes a vocoder that effectively mimics the nuances of human speech. This
comprehensive process ensures the generation of a high-quality and natural-sounding
speech synthesis. The investigation of vocoders specifically designed for child TTS
applications is a relatively unexplored area in the field of research. Since, the WaveRNN
model (as cited in [85], [95]) has been acknowledged for its versatility and effectiveness as
a universal vocoder, WaveRNN trained on the LibriSpeech dataset [96] was used to be
utilized as the universal vocoder for synthesizing child voices with Tacotron 2. In this work,
we use a modified version of Tacotron 2 which incorporates speaker embeddings. These
speaker embeddings allow the model to perform multispeaker capabilities. Each speaker is
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associated with a unique embedding vector, which is then incorporated into the training
process to allow the model to learn speaker-specific characteristics. This will be covered
in more detail in Chapter 4.

2.4.3 FASTPITCH WITH WAVEGLOW

Fastpitch [21] is a fully parallel TTS model that extends the architecture of Fastspeech [60],
introducing a conditioning mechanism on fundamental frequency contours. In the inference
phase, Fastpitch predicts pitch contours, allowing for dynamic alterations in the generated
speech. This not only enhances expressiveness but also ensures a more cohesive match
with the semantic content of the utterance. The model's simplicity, efficiency, and potential
for multispeaker scenarios also add to its advantages. The underlying architecture of
Fastpitch is built upon a fully parallel transformer, distinguishing it from Tacotron 2. This
design choice significantly improves the real-time factor, making it more efficient in
synthesizing mel spectrograms for a typical utterance. Fastpitch’s architecture as detailed
in Figure 4, includes two feed-forward transformer stacks that predict the duration and
average pitch of every character. It emphasizes the model's ability to predict and use pitch
in a low resolution, allowing for easy pitch adjustment and practical applications.
Furthermore, fastpitch integrates an unsupervised speech-text aligner [97], contributing to
its robust and versatile performance. Another standout feature of Fastpitch is its duration
predictor which accurately predicts the duration of each phoneme in the input text, allowing
the model to control the timing and rhythm of the speech more effectively. The duration
predictor is a significant improvement over Tacotron 2 [28], which doesn't inherently
control phoneme duration as effectively.
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Figure 4: Architecture of Fastpitch [21].

WaveGlow [90], which is a SOTA vocoder model is used in this work to generate high-
quality and natural-sounding speech waveforms from the Fastpitch output. WaveGlow
belongs to the category of normalizing flow models, which are generative models that learn
a one-to-one mapping from a simple distribution. WaveGlow operates by taking a
spectrogram representation of the speech as input and generating the corresponding
waveform. The model employs an invertible neural network to transform the spectrogram
into a latent space representation and then uses a series of invertible coupling layers to map
this latent representation back into the waveform domain. WaveGlow can also be
conditioned on additional information, such as speaker embeddings or linguistic features,
to allow for more control and customization of the generated speech. The synergy between
FastPitch and Waveglow not only enhances the expressiveness and semantic alignment of
the synthesized speech but also underscores the model's ability to cater to multispeaker
scenarios. This collaborative approach signifies a step forward in the domain of text-to-
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speech synthesis, offering both efficiency and high-quality output in a parallelized and
expressive manner.

2.5 Neural Speech-To-Text Technologies

The working of neural STT involves several stages (Figure 5), which are explained
below:
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Figure 5: Key components of neural Speech-To-Text.

1. Feature extraction of input audio: The raw audio signal is converted into a feature
representation that captures relevant information for speech recognition. Commonly
used features include Mel-frequency cepstral coefficients (MFCCs) or spectrograms,
which represent the frequency content of the audio signal over time.

2. Neural network architecture: Modern Speech-to-Text systems often use deep neural
networks, such as RNNs, long short-term memory networks (LSTMs), or transformer
architectures. Recurrent and LSTM networks are particularly useful for capturing
temporal dependencies in speech, while transformer architectures have gained
popularity for their ability to model long-range dependencies effectively.

3. Training: The neural network is trained using a dataset of paired audio and
corresponding transcriptions. During training, the network learns to map the audio
features to the corresponding textual representation.

4. Decoding: Once trained, the model is used for decoding. Given a new audio input, the
model predicts the most likely sequence of words that corresponds to the spoken
content. The highest-scoring final decoded output is elected as the final transcription.

5. Language models: Decoding often involves using a language model, which understands
the rules and structure of the language. It helps in accurately constructing sentences and
phrases, ensuring that the transcription makes sense in the chosen language.

It's worth noting that the quality of the STT system depends on factors such as the size and
diversity of the training data, the architecture of the neural network, and the effectiveness
of the decoding process.

2.5.1 SELECTION AND EVALUATION OF THE ASR MODEL

In selecting ASR models [3], [4] for this thesis, a comprehensive review was not
undertaken as we did with the TTS selection. The rationale behind the chosen ASR models
will become more apparent throughout this chapter. Initial tests were conducted with state-
of-the-art ASR models, including Kaldi [98], DeepSpeech 1&2 [67], [99], Espresso [100],
SpeechNet [101], QuartzNet [102], and Jasper [103], specifically assessing their
performance on child speech. These models were selected due to their popularity with adult
speech and the availability of a large community supporting it. The preliminary evaluations
revealed that most models did not yield satisfactory results with child speech. We also
attempted to finetune several of these models using the MyST _train child speech dataset
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(more in Table 8), followed by evaluating their performance on a subsequent test set. This
approach began to yield encouraging outcomes, showing a marked improvement in model
performance. However, these results, while promising, did not yet reach the level of state-
of-the-art achievements. It became clear that additional research and training are needed
for these models to effectively adapt to and recognize child speech patterns. Consequently,
we focused on using state-of-the-art (SOTA) models that are open-source and reproducible,
aligning with current trends in the field.

During the Interspeech 2021 ASR Challenge, 'Shared Task on Automatic Speech
Recognition for Non-Native Children’s Speech' [104], we observed a significant trend in
the application of the wav2vec2 [17] for child speech recognition. wav2vec2 aims to utilize
Self-Supervised Learning (SSL), to learn from large amounts of unlabelled data, a crucial
factor given the scarcity of labelled child speech data. The pretraining module of the
wav2vec2 doesn’t require transcription for audio files and can be trained with just speech
data. Therefore, we intended to utilize this model to train on the unlabelled MyST dataset.
It was also observed in the original wav2vec2 paper [17] that these pretraining models can
be finetuned on data as small as 10 minutes of adult speech and achieve SOTA results.
Therefore, it was also intended to see how this model will behave with child speech
finetuning and if a low amount of child speech data be used to achieve SOTA performance.
Therefore, extensive experiments were conducted with various groupings to understand the
impact of different pretraining and finetuning combinations on the model's performance.
We developed a comprehensive experimental framework that focuses on pretraining and
finetuning, using wav2vec?2 as the base model. This framework facilitates in-depth analysis
and optimization of wav2vec2 for child speech. It also serves as a benchmark for
comparative studies for our subsequent experiments using other ASR models. More on this
will be discussed in Chapter 5.

At the time of working with wav2vec2, we also came across Whisper [18] by OpenAl. The
authors of Whisper [18] successfully closed the gap in weakly supervised speech
recognition by using abundant labelled audio data. They extended weakly supervised pre-
training beyond English-only speech recognition to include multiple languages and
multitask learning, achieving excellent performance on various multilingual adult speech
datasets. Given Whisper's extensive training data, which is ten times more than wav2vec2
(680k vs. 60k) and includes many multilingual and low-resource languages, we aimed to
assess how well this multilingual data can be used for child speech recognition through
finetuning. The model's design, which supports multitask learning, provides advantages
when dealing with the complexities of child speech, which often includes a mix of
linguistic and paralinguistic elements that are challenging to capture with conventional
ASR models.

We also extended the Whisper methodology to encompass additional datasets featuring
non-native English child speech with diverse accents. This decision was driven by the
recognition that child speech datasets can exhibit substantial variability based on the native
languages of the speakers. We aimed to investigate how the model performs when exposed
to a wider range of accented child speech data. Our objective was to overcome the
challenges ASR systems face in accurately transcribing non-native English child speech, a
notably under-researched area, especially given the limited availability of training data for
these languages.

Finally, it was also decided to add a Conformer-Transducer ASR [16] in the experimental
pipeline. Conformer models use their hybrid architecture, combining CNNs and
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Transformers, allowing them to effectively process both local and global features of
speech, an important requirement for recognizing the varied and unpredictable speech
patterns of children. Conformer-transducer ASRs can also achieve competitive
performance with less training data compared to Whisper, which relies on a substantial
amount of labelled audio data. This can be advantageous in scenarios where collecting
labelled data is challenging or expensive such as child speech. Conformers also simplify
the ASR pipeline, reducing complexity and computational requirements compared to the
two-stage approaches of wav2vec2. The smaller model size of Conformer Transducer
models, compared to Whisper and wav2vec2, offers a distinct advantage as it reduces
complexity for deployment on edge devices (like the DAVID smart toy platform).
Additionally, Conformer models demonstrate robustness in handling diverse speech
patterns, accents, and background noises, which are common in child speech environments.
These models will be discussed in more detail in the subsequent sections.

Evaluation Metric:
For all our ASR experiments, we used Word Error Rate (WER) as the primary metric for
comparisons of the results. It is the most common metric used to evaluate the performance
of speech recognition systems. It measures the accuracy of transcribed speech by
comparing the machine-generated transcript to the correct, human-generated transcript.
WER is calculated based on the number of errors made, which are categorized into three
types:
= Substitutions: When a word in the transcribed text is incorrect but is present in the
speech.
= Deletions: When a word is omitted in the transcribed text but is present in the speech.
= |nsertions: When an extra word is added in the transcribed text that was not present in
the speech.

WER is calculated as the sum of the number of errors divided by the total number of words
in the correct transcript.

WER = Number of (Substitutions+ Deletions+ Insertions)
(Total Number of Words in the Correct Transcript)

2.5.2 WAV2VEC?2

The wav2vec2 model [17] can extract speech representations from raw audio files in a self-
supervised learning framework, tailored for subsequent downstream ASR tasks. Notably,
wav2vec2 demonstrates state-of-the-art results when trained on extensive unlabelled
speech data, subsequently finetuning on labelled data, even in scenarios with minimal
labelled data, as short as 10 minutes. This adaptability is particularly advantageous for tasks
where acquiring accurately labelled data is challenging, such as child speech.

The model's training consists of a two-step process, as illustrated in Figure 6. The initial
phase involves pretraining, wherein the model is trained on a substantial amount of
unlabelled data. The subsequent step entails finetuning on labelled data utilizing the
Connectionist Temporal Classification (CTC) loss [105], [106] for downstream ASR tasks.
Leveraging this two-step training approach allows the model to learn speech
representations in a self-supervised manner during pretraining, enabling effective training
with large quantities of unlabelled speech data. This resolves challenges related to the
scarcity of labelled child speech data, as the pretraining model can be trained on a
combination of unlabelled child speech data and abundant adult speech data.
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Figure 6: Pretraining and finetuning steps in the wav2vec2 architecture [17].

In the pretraining phase of wav2vec?2, three key components are involved: a feature
encoder, a context network, and a quantization module. The feature encoder, employing a
series of 1D convolutional layers, processes the raw audio waveform, producing a sequence
of feature vectors that represent the input waveform. The context network, a transformer-
based encoder, further processes these feature vectors using self-attention mechanisms,
facilitating the capture of long-range dependencies in the input data. The quantization
module employs a codebook of fixed vectors and a Gumbel softmax function to quantize
the feature vectors into discrete symbols. This process allows the model to efficiently
encode the sequence of symbols into a fixed-length representation for downstream tasks
like speech recognition. Subsequently, a contrastive loss function is applied, followed by a
diversity loss, enabling the model to learn effective embeddings for speech recognition.

For finetuning, 29 target letters from the Librispeech dataset are utilized. The optimization
involves minimizing the CTC loss for ASR tasks, and a modified version of SpecAugment
[107] is applied to mitigate overfitting and enhance recognition robustness. Finetuning
configurations vary based on the size of the finetuning datasets. The learning rate is
adjusted according to the dataset size, and different components of the model are trained
sequentially during the finetuning process. The feature encoder is frozen during finetuning,
ensuring stability and optimal performance.

It is reasonable to expect that the wav2vec2 models can be adapted for child speech with a
small amount of target data. The key advantage of wav2vec?2 lies in its ability to learn
contextualized speech representations directly from raw audio waveforms. During
pretraining, the model captures hierarchical information, including phonetic and linguistic
features, without relying on explicit alignment or transcription. This enables wav2vec2 to
generalize well to new and unseen data, making it particularly suitable for low-resource
scenarios. When adapting wav2vec?2 to child speech, the small amount of target data can
be efficiently utilized through finetuning. Finetuning involves updating the model's
parameters using the limited labelled data from the target domain, in this case, child speech.
By initializing the model with the pretrained weights, the finetuning process can quickly
adapt wav2vec? to the specific characteristics of child speech, such as higher pitch, faster
speaking rate, and unigque pronunciation patterns.

2.5.3 WHISPER

The Whisper model [18] represents a seminal advancement, characterized by its robust
handling of a wide range of speech data and its exceptional generalizability. The
architecture of the Whisper model is anchored in a transformer-based encoder-decoder
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framework. This choice is predicated on the proven scalability and efficacy of such
architectures in handling complex sequential data. The audio processing in Whisper
involves resampling input to 16,000 Hz and transforming it into an 80-channel log-
magnitude Mel spectrogram, calculated over 25 millisecond windows with a 10-
millisecond stride. A critical aspect of this processing is the global normalization of input
features, aiming to standardize the dataset with near-zero mean values. The architectural
specifics (as seen in Figure 7) include an encoder with two convolution layers integrated
with the GELU activation function, and the use of sinusoidal position embeddings. The
decoder component utilizes learned position embeddings and a unique tokenization
strategy that ties input-output token representations, adapted from the GPT-2 model [108],
with modifications to accommodate multilingual processing.

EN oeac| 0.0 | The |quickbrown ...

next-token
prediction

-
——i—
~ I
NLP ) [cross atiention
——p
= c —_—
: <] .
: g s
P — -
Transformer _{ B — 1
Encoder Blocks L MLP J o £ [ Transformer
——— = 2 i — Decoder Blocks
se attention o cross attenion
O [ i
— e self atienton
WP ) el
self attention
. € X J = —
Sinusoidal L - e
Positional B =
Encoding A

L d
2 x ConviD + GELU P:;;?)Zal

Encoding
SOT| EN |Gaee | 0.0 | The |quick| ...

Log-Mel Spectrogram Tokens in Multitask Training Format

Figure 7: Whisper architecture [18].

The training of the Whisper model is notable for its unprecedented scale and diversity,
encompassing 680,000 hours of multilingual and multitask data. This vast corpus of data
underpins the model's robust generalization capabilities. The training methodology
employed data parallelism across accelerators and leveraged FP16 precision, dynamic loss
scaling, and activation checkpointing techniques. The optimization strategy was built
around the AdamW optimizer and included a gradient norm clipping [109]. A key to
Whisper's training effectiveness was the limited number of updates, strategically chosen to
mitigate the risk of overfitting and to emphasize model robustness and generalization,
rather than relying on data augmentation or regularization methods. Whisper's multitask
format is particularly innovative, extending its functionality beyond transcription to
encompass translation, voice activity detection, and language identification. This
comprehensive approach simplifies the speech processing pipeline and broadens the
model's applicability.

Whisper showed exceptional performance in zero-shot settings, eschewing the need for
finetuning on specific datasets, which is a testament to its wide-ranging applicability. The
model's performance is characterized by an approach to human-level accuracy and
robustness, particularly in out-of-distribution contexts, a notable achievement in the field
of ASR. When compared to conventional supervised models, Whisper demonstrates
superior robustness, significantly outperforming them across diverse adult speech datasets.
For this reason, it was decided to use this model with child speech datasets and to see how
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it would behave with unseen and seen child speech datasets. It will be covered in more
detail in Chapter 5.

2.5.4 CONFORMER-TRANSDUCER

The Conformer-Transducer [16], a novel approach to ASR, represents a fusion of
Transformer and CNNSs. This hybrid architecture is designed to harness the respective
strengths of both approaches: Transformers' adeptness at capturing global interactions and
CNNs' proficiency in extracting local features. Central to the Conformer model (see Figure
8) are the Conformer blocks, which replace traditional Transformer blocks. Each
Conformer block consists of four key components: a feed-forward module, a multi-headed
self-attention (MHSA) module, a convolution module, and a second feed-forward module.
The MHSA incorporates relative sinusoidal positional encoding, enhancing the encoder's
robustness to variations in utterance length. The convolution module, starting with a gating
mechanism including a pointwise convolution and a gated linear unit (GLU), followed by
a depthwise convolution layer, is instrumental in capturing fine-grained local feature
patterns. A distinctive feature of the Conformer block is its Macaron-Net-inspired
structure. This involves two half-step feed-forward networks (FFNs) sandwiching the self-
attention and convolution modules. The use of pre-norm residual units and Swish activation
in the feed-forward modules reflects a sophisticated approach to optimizing the network’s
learning process. These structural innovations improve performance and contribute to the
model's parameter efficiency, crucial for large-scale ASR applications.
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Figure 8: Conformer architecture [16].

Conformer-Transducer offers an improvement in WER for adult speech over the RNN-T
and the Transformer architectures. The Conformer-Transducer uses the autoregressive
transducer decoder, dropping the original simpler LSTM decoder. It also uses the
transducer loss instead of the CTC to reduce incorrect spellings by implicitly telling the
model to inherent dependency between predicted output tokens, while CTC assumes that
the output tokens are conditionally independent. However, this comes at the cost of larger
Graphical Processing Unit (GPU) requirements for training and slower decoding speeds.
The Conformer model's integration of convolution within a self-attention framework marks
a significant technical innovation in ASR. Its nuanced approach to positional encoding,
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optimization of activation functions, and efficient structural design underpin its state-of-
the-art performance in ASR tasks.

2.5.5 MODEL PARAMETERS AND SIZES

The Conformer-Transducer, Whisper, and wav2vec2 models each offer a range of versions
that cater to different computational needs, trained on datasets varying in size and
composition. Table 4 highlights the architectural parameters for wav2vec2, Whisper and
Conformer-Transducer models used in this work. The Conformer-Transducer models,
available in 'Small' to "XLarge' sizes, are generally trained on standard ASR datasets like
Librispeech[96]. Whisper models show a similar trend, with sizes ranging from 'Tiny' to
‘Large’. The 'Tiny' model consists of 39M parameters while the Large model contains
1550M parameters. The wav2vec2 models, with the 'base’ and 'large’ versions, are distinct
for their parameters and training dataset size with the ‘base’ model pretrained with 960
hours and ‘large’ being trained with 60k hours of adult speech.

Table 4: Architecture parameters for Conformer-transducer, Whisper, and wav2vec2

Models
Models Layers | Width Heads FLQZ?gnmg Parameters
Conformer-Transducer Models [16]:
Small 16 176 4 3.0 14M
Medium 16 256 4 3.0 32M
Large 17 512 8 3.0 120M
XLarge 24 1024 8 3.0 600M
Whisper Models [18]:
Tiny 4 384 6 1.5x 103 39M
Base 6 512 8 1x10°3 72M
Small 12 768 12 5x10* 244M
Medium 24 1024 16 2.5x10* 769M
Large 32 1280 20 1.75x10* 1550M
wav2vec2 Models [17]:
Base 12 768 8 5x10* 95M
Large 24 1024 16 3x10* 317M

The effectiveness of each model variant is closely tied to the size and type of dataset it is
trained on. The use of these models will become more apparent in Chapter 5. Since we are
using these models for improving child speech ASR with limited resources, we maintained
most hyperparameters as set by the original authors of each model. This approach not only
ensures optimal results but also maintains consistency, which is important for drawing
accurate comparisons with other approaches.
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Chapter 3

Child Speech and Public Datasets: Challenges
and Solution

Before engaging in the technical intricacies of this research, it is important to review the
child speech datasets involved. A comprehensive understanding of the characteristics,
scope, and constraints of these datasets helps appreciate the challenges in this field of study.
The availability of high-quality child speech datasets is a pivotal factor in advancing TTS
and ASR technologies for children. Researchers are actively working on creating and
curating such datasets to capture the variability within child speech, considering factors
like age, language background, and developmental stages. However, these datasets are
limited (as will be discussed in section 3.2), especially the ones available for research use.

This chapter provides an in-depth exploration of several key aspects related to child speech.
Initially, it addresses the reasons why child speech is considered a low-resource area in
research, highlighting the scarcity of data and the unique challenges it presents. A
significant portion of the chapter is dedicated to examining the fundamental differences
between child and adult speech, which are crucial for understanding the complexities
involved in accurately recognizing and processing child speech. The chapter then
transitions to a detailed discussion of the specific datasets used in this study, challenges
associated with these datasets and methods employed for cleaning and pre-processing the
datasets. Finally, the chapter concludes with insights into the development of an application
specifically designed for child speech data collection.

3.1 Why Child Speech is a Low-Resource Area of Research?

A low-resource language refers to a language for which there is limited or scarce linguistic
data available, especially when compared to more widely spoken or studied languages.
This scarcity of resources can include a lack of written or spoken language data, annotated
corpora, language models, or language technologies specifically tailored for that language.
In child speech research, the focus is often on developing technologies or models that can
understand and generate child speech accurately. However, children speak and interact
with language differently from adults. They may use simpler grammar, have unique
pronunciation patterns, or employ age-specific vocabulary. As a result, developing
language technologies for children becomes even more challenging. Therefore, child
speech is considered a low-resource area in TTS and ASR research.

The speech and language characteristics of children's voices are substantially different from
those of adults [8]. This difference poses a challenge in creating effective models that can
accurately recognize and process child speech. Furthermore, there is a notable scarcity of
sizable open datasets for children's speech in the research community [110]. This lack of
extensive and varied datasets hinders the development and refinement of models
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specifically tailored for child speech recognition. Collecting data for child speech research
can be a challenging task. Most TTS datasets are created in studios with expensive
equipment where an adult will be using a microphone to create clean, noiseless, easy-to-
understand, and meaningful audio. This task is not easy to produce and even more difficult
to implement with a child.

Child and adult speech also differs significantly in several ways. Children's speech has a
higher pitch, slower rate, and less precise articulation due to their developing vocal
apparatus. They often use simpler vocabulary and syntax, with exaggerated intonation and
less fluent delivery marked by pauses and hesitations. In contrast, adults have a lower pitch,
faster speech rate, more precise articulation, and more complex vocabulary and syntax,
with controlled prosody and richer voice quality, reflecting fully developed speech organs
and greater linguistic experience. These fundamental differences mean that adult speech
datasets may not yield comparable results when applied to child speech, making it
challenging to achieve accurate models and analysis across different age groups.

Our research also revealed that when plotted in a two-dimensional space, the speech
features of adults and children exhibit distinct characteristics. Child and adult speech
exhibit distinct characteristics when analysed through speaker embeddings created by a
256-dimensional speaker encoder [131]. These embeddings when plotted in a 2D space
showed that child speech embeddings clustered closely together and distinctly from male
and female speakers. Cosine similarity measure between adult and child speaker
embeddings also showed that adult and child embeddings were quite distant from each
other. This will be discussed in more details in Chapters 4 and Chapter 6.

3.1.1 How IS CHILD SPEECH DIFFERENT FROM ADULT SPEECH

Child speech is often described as more noisy or messy compared to adult speech.
Children's speech is characterized by rapid developmental changes [5]. As they grow, their
vocal tract anatomy and language skills are continuously evolving, leading to significant
variability in their speech patterns. This variability makes it challenging to standardize and
model child speech for recognition purposes. Children also often exhibit less consistent
pronunciation and articulation. Their speech can include mispronunciations, incomplete
word formations, and a range of unpredictable variations, unlike the more stable and
predictable speech patterns seen in adults [5], [7], [9], [111]. Furthermore, children's speech
often includes a higher frequency of non-verbal sounds, such as laughter or crying, and a
tendency to mix languages or use idiosyncratic language forms, adding another layer of
complexity. In contrast, adult speech tends to be more uniform and stable, with clearer
articulation and more predictable speech patterns. Let’s look at the main key differences
between adult and child speech can be broken down into several areas as follows:

Physiological Differences [112]: The anatomical structure of children's vocal tracts is
significantly smaller than that of adults, which leads to distinct differences in prosody
features [8], [113]. This size disparity results in children's voices having characteristics and
features that are markedly different from those of adults. For instance, the fundamental
frequency or pitch of children's speech is considerably higher [83], [114]. While adult
speech typically ranges from 70 to 250 Hz in pitch, children's speech pitch spans between
200 to 500 Hz [113]. This higher pitch is attributed not only to their smaller vocal cords
but also to their overall smaller body size, which influences the resonance and timbre of
their voice. Additionally, there are noticeable differences in the speaking rate [114], [115].
In children speech, the average duration of each phoneme is longer, leading to a slower
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speaking rate compared to adults. This slower rate of speech in children is not solely due
to their smaller vocal cords but is also influenced by various factors such as their
developmental stage, cognitive processing abilities, and linguistic skill level. As children
grow and develop, their speech rate, pitch, and other prosodic features evolve, adding
another layer of complexity to the task of accurately recognizing and analysing a child’s
speech. This evolution in speech characteristics presents unique challenges in speech
recognition and processing, requiring specialized models that can adapt to the changing
features of a child's voice.

Linguistic and Developmental Differences: The speech of children is marked by greater
variability than that of adults. A multitude of factors, including the child's age, stage of
development, and individual speech traits, lead to a broad spectrum of speech patterns
[116], [117]. This extensive variability presents considerable challenges in both modelling
and comprehending child speech. As children are in the developmental stages of acquiring
and honing their speech abilities, they frequently exhibit unclear articulation and significant
variability in their pronunciation. The vocabulary of a child is generally more constrained
compared to adults, and their use of sentence structures tends to be simpler. In the process
of mastering language, children are still grasping the intricacies of grammar and syntax,
aspects that are discernible in their speech patterns. This ongoing development in language
skills means that their speech can change rapidly over a short period, reflecting their
learning curve. This aspect of speech evolution in children adds a dynamic dimension to
their speech, making it a moving target for speech recognition systems [3], [4].
Understanding and accommodating these developmental differences are crucial in creating
effective models for child speech recognition, as they need to be flexible enough to adapt
to the evolving nature of a child's linguistic capabilities.

Behavioural and Environmental Differences: Children's speech can be less predictable
and more spontaneous as compared to adults. Children frequently alter their speaking pace
or loudness unexpectedly, and their speech is often imbued with a wide range of emotions
and expressions [14], [118]. This spontaneity can pose a challenge for consistent speech
recognition. Additionally, recordings of children's speech are typically characterized by a
higher level of background noise. Children often speak in less structured settings, such as
play areas or classrooms, where a variety of extraneous sounds are present. These
environments can introduce a multitude of unpredictable acoustic elements into the
recordings, complicating the task of isolating and analysing the child's speech. This
combination of behavioural unpredictability and environmental noise adds layers of
complexity to the process of capturing and processing child speech data effectively.

Increased Acoustic Variability and Rapid Evolution of Speech: The acoustic and
linguistic properties of children's speech are significantly more varied and unpredictable
compared to adults. This is due to various factors such as age, developmental stage, and
individual differences in speech patterns, including pronunciation, speed, and prosody [8],
[118], [119]. These elements contribute to a heightened level of complexity in accurately
recognizing and processing child speech. Furthermore, as children grow, their speech
undergoes rapid changes. The dynamic nature of their speech development means that
datasets capturing their speech can quickly become outdated. Therefore, there's a continual
need to update these datasets to keep pace with the evolving speech characteristics of
children, further increasing the complexity and resource demands in child speech research.
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3.1.2 WHAT ARE THE TECHNICAL CHALLENGES ASSOCIATED WITH
CHILD SPEECH RESEARCH?

The field of child speech research is riddled with unique technical challenges, significantly
different from those encountered in adult speech processing. These challenges stem from
various factors, including the nature of child speech, data collection constraints, and the
evolving ethical landscape in research. Each of these factors contributes to the complexities
of developing accurate and reliable speech recognition and synthesis systems for children.
These factors include:

Limited Data Availability [110], [120]: Unlike adult speech data, which can be readily
sourced from various mediums like studios, YouTube, audiobooks, etc., collecting child
speech data presents unique challenges. The primary issue stems from the environments in
which child data can be ethically and legally collected. Unlike adults, recording child
speech often requires specific conditions, such as educational settings or controlled
environments, to ensure safety and comfort. Furthermore, regulations such as the GDPR
[41], [45], [121] impose strict guidelines on how personal data, especially of minors, can
be collected and used, adding layers of complexity to the data collection process. These
factors collectively lead to a significant limitation in the availability of diverse and
extensive child speech datasets.

Limited Expertise: There is a limited pool of researchers and developers with the
specialized knowledge required to tackle the unique challenges of child speech recognition
and synthesis. This lack of expertise further contributes to the area being under-resourced.

High Annotation Costs: The annotation of child speech data is a complex and nuanced
process, requiring specialized expertise in child language development. Children’s speech
is characterized by pronunciation errors, evolving grammar, and simplified language
structures, making their speech fundamentally different from adults. This complexity
necessitates a detailed and careful approach to annotation, often involving multiple
revisions to capture the nuances of a child's linguistic development accurately. This
specialized process is both time-consuming and costly, as it requires linguists with specific
expertise in child language. Consequently, the scarcity of accurately annotated child speech
data poses a significant challenge in developing effective speech recognition technologies
for children, underlining the need for more focused resources in this area.

Lack of Standard Benchmarks: Unlike adult speech, where there are well-established
benchmarks and datasets, child speech lacks such standardization. This absence of
benchmarks makes it difficult to measure progress and compare different systems for child
speech. This absence hinders the ability to track developmental progress, establish
standardized practices, and conduct comparisons across various studies or system
implementations.

In light of these challenges, our research endeavours to navigate and address these
complexities. We utilize publicly available datasets and have developed a comprehensive
cleaning and pre-processing methodology. This approach is designed to enhance the
usability and standardization of these datasets, making them more suitable for research in
the context of the unique characteristics of child speech.
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3.2 Datasets Used in This Study

The nature of this study, considering the challenge of limited children’s speech datasets
and the multi-step training process involved, calls for the use of multiple large datasets,
including adult speech datasets. The specific applications of these datasets will become
increasingly apparent as per their usage in subsequent chapters. Each dataset has been
selected for its unique suitability, each contributing distinctively to the different
experimental setups and objectives. This structured approach allows for a nuanced
exploration of the multifaceted aspects of child speech research, highlighting the versatility
and importance of each dataset in the broader context of our study.

3.2.1 ADULT SPEECH DATASETS USED IN THIS STUDY

In the context of our research focusing on ASR and TTS technologies for child speech, we
employed a comprehensive range of adult speech datasets. These include Librispeech[96],
LibriTTS[122], VCTK[123], VoxCeleb1[124], LJ Speech[78], and Librilight [125].
Utilizing these diverse datasets allows us to access a wide variety of speech patterns,
accents, and linguistic nuances (will be discussed in more detail in Chapters 4 and 5). This
variety is crucial for training and refining our ASR and TTS models, ensuring they are
robust and versatile enough to handle the complexities of child speech. The demographics
of these datasets are made available in Table 5.

Table 5: Adult Speech Datasets Used in This Study

Dataset Speakers Hours Comments

Librispeech [96] 2400 960 English speech dataset derived from
audiobooks. Popularly used in ASR
research.

LibriTTS [122] 2400 585 TTS dataset derived from Librispeech
corpus.

VCTK [123] 110 44 Recordings from various English accents
and are highly used in multi-speaker TTS
research.

VVoxCeleb1[124] 1251 352 Celebrity voices extracted from YouTube
containing 153,516 utterances from 1,251
speakers.

LJ Speech [78] 1 24 Popularly used in TTS research

Librilight [125] 60,000 Self-supervised dataset of adult speech
containing 60k hours of audio files without
transcription. Popularly used in SSL ASR
training.

Adult speech datasets, including LJ Speech, Librispeech, LibriTTS, VCTK, and
VoxCelebl, are essential in ASR and TTS research for child speech. Utilizing adult speech
datasets alongside child speech datasets can significantly improve research outcomes for
child speech in ASR and TTS. Adult datasets provide a robust and diverse foundation of
speech patterns, which can be leveraged to train and develop initial models. These models,
once trained on adult speech, can undergo transfer learning processes, adapting their
learned features to cater to the nuances of child speech. This approach not only broadens
the model's understanding of speech variability but also compensates for the gaps and
limitations inherent in child speech datasets. Furthermore, in ASR systems, the inclusion
of adult datasets adds a layer of phonetic and prosodic complexity, enriching the model's
capability to process the broader spectrum of speech characteristics found in child speech.
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Additionally, these adult datasets are instrumental in cross-age testing, evaluating the
performance and adaptability of models across different age groups. This testing is crucial
for understanding the effectiveness of child speech models on adult speech and vice versa,
ensuring the development of versatile and adaptable speech technologies.

3.2.2 CHILD SPEECH DATASETS USED IN THIS STUDY

We also utilized various child speech datasets such as the My Science Tutor (MyST) corpus
[126], PFSTAR [127], CMU_Kids [128], and speechocean762 [129]. These datasets are
pivotal in providing a rich source of data that encapsulates the unique linguistic
characteristics and speech patterns of children. The MyST dataset, for instance, offers a
diverse range of child speech recordings in an educational context, making it invaluable
for understanding and modelling how children interact in learning environments. PFSTAR
and CMU Kids contribute significantly with their varied samples of child speech,
encompassing different age groups, accents, and dialects. The speechocean762 further
enriches our research resources with its collection of child speech data in non-native
Chinese accents. The utilization of these child-specific speech datasets ensures that our
research is grounded in real-world speech characteristics of children, allowing for the
development of more accurate and effective speech technology solutions tailored for
younger users. More details about these datasets can be seen in Table 6.

Table 6: Child Speech Datasets Used in This Study

Dataset Age Speakers | Hours | Comments
Range
My Science Tutor Grade 3- | 1371 393 Advantages:
(MyST) corpus Grade 5 = The largest corpus of child speech
[126] dataset available open source for

research use.
= 49% of the data is transcribed.

Disadvantages:
Contains a lot of noisy data

PFSTAR [127], Contains child speech including read
= British 6-11 159 14.1 and spontaneous native and non-
English native dialects in British, German,
= German 10-15 57 3.4 Italian and Swedish accented English.
* ltalian 9-11 78 35
= Swedish 4-8 40 1.2 Clean speech in comparison to other
child speech datasets.
CMU Kids [128] 6-11 76 9 Very noisy dataset, and difficult to
understand.
Speechocean762 6-43 250 6 Consists of 5000 English utterances
[129] from 250 non-native  Chinese

(Mandarin) speakers, where half of
the speakers are children

It's evident from Table 5 that the quantity of adult speech datasets significantly exceeds
that of child speech datasets as listed in Table 6. Let's delve deeper into the difficulties
linked with these child speech datasets and explore potential solutions for overcoming these
challenges.
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3.2.3 PROBLEMS ASSOCIATED WITH THE CHILD SPEECH DATASETS USED

IN THIS RESEARCH

We conducted a comprehensive study on child speech datasets. With the aim of
maintaining a standardized methodology, we analysed both the audio recordings and their
corresponding transcriptions. The goal was to determine the most effective strategies for
cleaning and refining the datasets to ensure the highest level of clarity and usability. This
involved a detailed examination of the transcriptions and various intricacies present within
these datasets, as well as identifying the challenges they pose. Due to the absence of
corresponding transcripts for many audio files within these datasets, the decision was made
to exclude such audio files from the dataset. For the audio files with transcripts in hand, we
observed a lot of transcripts without phonetic meaning and were missing quite some
pronunciations. The transcripts of some example audio files from the MyST dataset [126]
are listed below in Table 7 to illustrate some of the problems. It was also important to
establish a standardized naming and saving convention for the audio files and their
transcriptions, tailored to the specific ASR/TTS training methodologies being employed.
Therefore, It was decided to clean these datasets to make them usable for TTS and ASR
training as discussed in section 3.2.4.

Table 7: Problems Seen in Transcripts of the MyST Child Speech Dataset [126]
Problems identified in Example
Transcripts
Audio files containing noise in = myst 004029 2013-12-17 09-34-
their utterances without any 22_EE_2.2_009.wav| <noise>
phonetic meaning = myst_002268_2015-04-21_08-14-
11 LS 3.1 013.wav]| it's glowing <breath>
Audio files that are not coherent =  myst_002267_2015-04-30_13-20-
or indiscernible. 05_LS_3.3 014.wav| in oxygen right <indiscernible>
=  myst_004029_2013-12-03_09-52-
03_EE_1.4_016.wav| ‘‘can hear sound because of that
<indiscernible>"’

Audio files are too small in length | = myst 002013 2014-03-11 11-14-
16_LS_2.1 025.wav | ‘‘energy <noise>"’

Audio files are too long = myst 002013 2014-03-11_11-14-

16 LS 2.1 0l4.wav | ““it’s trying to show us that all
the things that it needs all the things that the plants
needs to grow it needs soil on the bottom it needs at
least a ground a top the a a top to lay on for the plant to
grow so you can see it that’s only with flowers and
plants it’s not with vegetables and it needs and it needs
the energy from the sunlight to grow and it needs water
because somebody’s watering the plant.”’

Transcription containing text with | = myst_002033_2014-03-10_13-45-
no phonetic information. 32_LS 2.1 020.wav | ““(O)(O)()”’
=  myst 002030 _2014-04-30_10-32-

58 LS 4.2 011.wav|the (()) (()) might help it push
Repetition of words/stammering = myst 990027_2008-21-04_00-00-
noticed in children’s voices. 00_MS_1.1 050.wav | “‘um we measured how big a
millimeter meter is a meter and a kolome- a = kilometer

*7’
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=  myst_990027_2008-21-04_00-00-
00_MS_1.1_046.wavlit was uh a cuh- uh cold between
warm day it's col- cold mostly cold

In the course of our research, numerous issues were identified in the audio files of the child
speech datasets, beyond just the accuracy of the transcripts. A significant portion of these
audio recordings exhibited various forms of noise, such as distortions from children
speaking too close or too far from the microphone, ambient background noise, stammering
and missing words, as well as instances of extremely low or high volume. Some files even
contained sounds with no phonetic significance, amounting to pure noise. To address these
challenges, these problematic files were meticulously removed from the datasets.
Additionally, several datasets were segmented into smaller sections to enhance their utility
for training purposes. It is also important to note that for uniformity and ease of use in
TTS/ASR training, all the training audio files were converted into the .wav format, while
the transcription files were standardized in the .txt format. Detailed methodologies with
regards to the cleaning and pre-processing specifics for some of these datasets are
elaborated in the ASR and TTS publications, which are included in Appendix B, C and E
of this thesis.

3.2.4 CLEANING AND PREPROCESSING OF CHILD SPEECH DATASETS

To preprocess and clean child speech datasets for TTS and ASR research, a comprehensive
approach was adopted, drawing from methodologies used in the development of the
LibriTTS dataset [122]. Audio files are first standardized: for ASR, they are converted to
16-bit depth at a 16 kHz sampling rate, and for TTS, a 24 kHz sampling rate is used, using
tools like ffmpeg?! and sox?. Afterwards, text data normalization is performed, where
abbreviations and punctuation are systematically replaced. This normalization extended to
whitespace and character case uniformity. Non-linguistic annotations in the datasets, such
as various symbols and noise markers, were meticulously removed, retaining only
alphanumeric characters in the transcripts. These non-linguistic content (in child speech
datasets) included annotations such as ‘‘<unk>, sil, hmm, <breath>, <noise>,
<indiscernible>, [ze-], [cham-], [**xision], etc.”” which were also removed through basic
text processing tools.

The dataset was then segmented into smaller, more manageable chunks. This was achieved
through the use of the Montreal Forced Aligner?, which provided forced alignment of the
speech data. This alignment process generated precise timestamps, correlating transcripts
with their corresponding audio files at the word and phone levels. These timestamps were
then utilized to segment larger audio files into smaller sections, typically ranging from 5 to
25 seconds. Longer audio files that proved challenging for segmentation or were not
meaningful, as well as shorter files typically filled with noise, were excluded from the
dataset.

This thorough cleaning and preprocessing protocol ensured the creation of a dataset that
was not only cleaner but also more conducive to research, specifically tailored to the unique
requirements of child speech data in TTS and ASR applications. The focus on dataset
quality and usability was crucial in addressing the inherent challenges posed by child
speech, paving the way for more effective and efficient speech recognition and synthesis

! https://ffmpeg.org/
2 https://github.com/chirlu/sox
3 https://github.com/Montreal CorpusTools/Montreal-Forced-Aligner
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research. This allowed us to create a cleaner and more research-friendly version of each of
the child speech datasets used in this work. The detailed demographic on cleaner subsets
of these child speech datasets is provided in Table 8.

Table 8: Child Speech Datasets Demographics (Post-Cleaning)

Dataset (post-cleaning) Hours Comments
MyST Original 393 TinyMyST is a subset of MyST containing
clean, transcribed speech used in our TTS
MyST Subset: experiments.
=  TinyMyST 19.22
= MyST_2 MyST_2 is a subset of MyST which contains 65
o MyST_train/MyST_55h | 55 hours of clean child speech. This dataset
o MyST test 10 contains parts of TinyMyST as well as an
additional dataset from the untranscribed MyST
subset which was transcribed  using
methodologies discussed in section 3.2.4.
MyST_2 is divided into MyST_train (55hrs)
and MyST_test (10hrs). MyST _train is used in
most of our experiments for training TTS and
ASR models. MyST _train is also referred to as
MyST_55h in ASR experiments.
PFSTAR Different PFSTAR subsets were segmented and
= British English 12 combined as per their usage in ASR

o PFS_train/PFS_10h | 10 experiments.

o PFS_test 2 British English is referred to as PFS in our
=  German 3.4 experiments since it was the most used dataset
= Jtalian 35 from the PFSTAR dataset. It was divided into
= Swedish 13 PFS_train and PFS_test for most experiments.

' German, Italian and Swedish subsets were only
used for Non-Native child speech ASR
experiments and are covered in more detail in
Appendix E.

CMU Kids 9 Transcripts were cleaned to remove non-
* CMU_Kids 9 meaningful and non-phonetic information.
= Non-Native Experiments CMU Kids is mostly used as an unseen

o CMU_train 7 inference dataset for ASR experiments (named

o CMU_test 2 CMU_Kids for those inferences).

It was divided into CMU train (7hrs) and

CMU _test (2hrs) for Non-Native child speech

ASR experiments (see Appendix E).
Speechocean762 24 We selected speakers whose ‘Age’ was less

than ‘18’, amounting to 2.4 hours of child
speech.

The dataset created using the described cleaning methodology illustrates a well-structured
and specialized approach to child speech dataset preparation for TTS and ASR research.
This approach, with attention to detail in segmentation and transcription, significantly
enhances the dataset’s utility for research, paving the way for more accurate and efficient
child speech technologies. These datasets, now in a cleaner and more structured form, are
tailored to effectively support the various TTS and ASR experiments detailed in our study.
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3.2.5 TRAINING DATA REQUIREMENT FOR ASR AND TTS SYSTEMS

The development of speech technologies, ASR and TTS, relies heavily on extensive and
well-structured training data. Understanding the distinct data requirements for these
systems is crucial for optimizing their performance and achieving high levels of accuracy
and naturalness. This discussion highlights the key differences in training data
requirements for ASR and TTS systems, particularly in terms of the number of speakers,
the amount of data per speaker, and the recording conditions, with a focus on child speech
datasets and adult datasets used in the field.

ASR systems require a large number of speakers to ensure diversity and robustness of the
model. Typically, these systems utilize datasets with thousands of speakers to capture the
variability in pronunciation, accents, and speaking styles. For instance, the Librispeech [96]
dataset contains approximately 2,400 speakers and provides 960 hours of speech, averaging
roughly 24 minutes of data per speaker. Conversely, TTS systems can achieve effectiveness
with fewer speakers, as demonstrated by datasets like LJ Speech [78] (24 hours) and
LibriTTS [122] (585 hours), emphasizing quality and consistency over sheer volume.

When considering data per speaker, ASR systems prioritize short utterances from
numerous speakers to compile a substantial dataset. ASR systems generally require more
data per speaker to build robust acoustic models that can handle the diversity of speech
patterns. In child-specific datasets like MyST_Complete [126], the average data per speaker
is 15 minutes, with individual contributions ranging from as low as 1.72 minutes to as high
as 110 minutes per speaker. The inclusion of cleaned subsets of child speech like
TinyMyST and MyST 2, with the abundant adult speech datasets enhances ASR
experiments. Conversely, TTS systems may require a smaller number of speakers, as the
focus is on generating high-quality synthetic speech from a single or a few target voices.
The effectiveness of TinyMyST and MyST_2 datasets is evident in TTS experiments (to
be detailed in Chapter 4), showcasing the ability to produce good-quality child speech
despite their modest size. Each TTS dataset needs to be comprehensive, covering various
phonetic contexts, regardless of data per speaker. For example, the TinyMyST dataset
spans speech durations from 10.2 seconds to 8 minutes per speaker, contributing to a
comprehensive 20-hour dataset. Combined with finetuning techniques, these datasets
played a pivotal role in achieving optimal TTS results.

Recording conditions also play a crucial role in shaping dataset characteristics. ASR
systems must accommodate diverse real-world conditions, including background noise and
varying microphone qualities. In contrast, TTS systems require clean, noise-free
recordings, often produced in controlled studio environments. The Librilight dataset [125]
exemplifies ASR-focused recordings, capturing diverse conditions to enhance model
robustness, while the VCTK corpus [123] provides TTS-specific recordings under
controlled conditions to ensure natural and intelligible synthetic speech.

In summary, ASR systems benefit from a large number of speakers and can tolerate diverse
recording conditions, whereas TTS systems require fewer speakers but need extensive,
high-quality data per speaker recorded in controlled environments. These differences
reflect the distinct objectives of each technology as ASR aims for broad recognition
accuracy, while TTS focuses on generating high-quality, natural-sounding speech.
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3.3 Building an Application for Child Speech Data Collection

In the context of the DAVID initiative, our efforts extended to the development of an
interactive application designed for children's engagement. The application presents
sentences for the children to articulate, thereby serving a dual purpose: to facilitate an
interactive learning experience and to gather child speech data in collaboration with Xperi
data collection. This endeavour aligns with our project goals for data collection with Xperi
for the development of the DAVID smart toy. The app was developed with the invaluable
expertise of Joe Desbonnet, who has over 30 years of experience in software engineering
and entrepreneurship. Joe's is a postdoctoral researcher in our research group and his
contributions were significant in crafting an engaging and effective application.

The development of the app for child speech data collection underwent a comprehensive
process, commencing with a meticulous design phase. During this phase, the development
was concentrated on crafting the user interface (Ul) of the app, carefully selecting a colour
scheme and graphics that would be visually appealing and engaging for children. The Ul
was engineered to be intuitive and child-friendly, ensuring that the children could navigate
it with ease and interest. Attention was also given to the cognitive load of the app, making
sure that it was age-appropriate and did not overwhelm the young users. Functionalities
such as interactive prompts and feedback mechanisms were integrated to foster an
immersive learning environment.

Following the design phase, the project moved into the Proof of Concept (PoC) testing.
This critical phase involved real-world testing of the app with children to validate the
design choices and functionalities. We initially reached out to colleagues within our
network who had children, inviting them to participate in the testing phase. This approach
allowed for a controlled yet authentic testing environment where children could interact
with the app in a natural setting. Feedback from these initial users was invaluable,
highlighting areas for enhancement such as the responsiveness of the app, clarity of
instructions, and the overall user experience. Based on this feedback, iterative
improvements were made to refine the app.

With the successful completion of the PoC testing, the app was then ready to be deployed
for actual data collection. This final stage marked the transition from a controlled testing
environment to a broader and more diverse field of use. The app, now finetuned and
validated, was utilized to present sentences to children, who would then articulate them,
allowing for the capture of a rich array of child speech data. This will be discussed in more
detail in section 3.4.

3.3.1 TECHNOLOGIES INVOLVED

The app's technical infrastructure was built on Tomcat! web apps, providing a robust Java
HTTP web server environment. MariaDB? was employed for MySQL support, ensuring a
reliable database system for storing and managing the collected data. Additionally, the
application was containerized using Docker 3, which streamlined deployment and
scalability. The app's current iteration is available privately on GitHub. Furthermore, the
integration of the Mozilla Web Speech API* offered a seamless speech recognition

! https://tomcat.apache.org/

2 https://mariadb.org/

3 https://www.docker.com/

4 https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
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interface, accessible directly from web browsers, which was pivotal in facilitating the
speech data collection from children using the web app.

3.3.2 WORKING OF THE APPLICATION

Figure 9 presents the workflow of a web-based application for collecting child speech data.
In this process, a child interacts with the application by reading aloud an English sentence
displayed on the web browser. This spoken input is recorded and subsequently analysed by
an integrated cloud-based ASR system, which transcribes the audio and evaluates it against
the original text. The transcription's accuracy is scored using the WER metric—a standard
assessment tool in speech recognition. If the transcription's accuracy surpasses a set
threshold, indicating a high-quality speech sample, it is stored anonymously in a database.
Conversely, if the ASR score falls short of the threshold, indicating potential errors or
unclear speech, the system still retains the sample but prompts the child to repeat the
sentence. This ensures a comprehensive collection of data, capturing a wide range of
speech clarity.

The Harvard sentences® are employed as input for this application, enabling children to
speak these sentences and record them, with the recordings being securely stored in a
protected server. Harvard sentences are carefully crafted to be phonetically balanced. This
means they contain a wide range of phonemes (basic units of sound in a language) in
proportions that are typical in everyday speech. For children, these sentences are
particularly useful as they cover a broad spectrum of sounds found in the English language,
which is beneficial for speech recognition and synthesis systems. These sentences are
designed to be easily spoken, making them suitable for children who are still developing
their speech and language skills.

™

&3

Figure 9: Flow diagram showing the working of the child speech data collection application.

3.3.3 APPLICATION INTERFACE

The application starts with a user login interface, which is designed to be child-friendly,
ensuring ease of access for young users. This step also involves parental permission,
considering the app is used by children. Harvard sentences are used to provide input to the
app. The core functionality of the app involves recording children's voices as they speak

! https://harvardsentences.com/
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the Harvard sentences. The interface for this is made visually engaging and intuitive,
encouraging children to speak naturally and comfortably. After recording, the application
stores the voice data for processing. This involves uploading the data to a server for further
analysis. Figure 10 illustrates these different elements of the application, providing a visual
guide to its usage.

CVRv0.20

Email

Password

ai Loc.;in Screen

Start recording Speaker name
First language / Mother Tongue

Afrikaans

Gender

b) Create new profile

Start recording Masme

Profiles Tim (M)
Cris (M)

jdesbonnet@gmail.com

ogged in Select speaker profile and start recording

c) Profile selection

Start recording
Hi Test Speaker. Please say the following phrase:
Profiles

The lamp shone with a steady green flame.

idesbonnet@gmail.com
logged in.

Start Recording

Volume

d) Recording Screen
Figure 10: Child voice recording application interface.

The speech recording feature in the application employs a colour-coded feedback system
to indicate pronunciation accuracy. When a child's speech is detected as incorrect, the text
colour changes to yellow, while correct pronunciation results in a blue text colour. For
visual representation, refer to Figure 11.
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Voice recognition activated. Try speaking into the microphone. Score is 97%

floor. The desk was on the shaky floor.

is Kaz from on the shaky floor the desk was farm on the shaky floor

Start Recording Start Recording” & Send Recording

Volume

Volume =

a) Output: Incorrect pronunciation b) Output: Correct pronunciation

Figure 11: App output for incorrect and correct pronunciation.

The data recorded by the app was stored in a JSON format containing important metadata
such as 1D, age, transcription, speaker, language etc. associated with the child speaker. An
illustration of this format can be seen in Figure 12. It also contains a base64 audio
representation which can be easily exported to .wav audio codec. In the image below, the
field highlighted in white represents the base64 Audio encoding. The audio files are also
stored in .mp3 and .wav format along with the .json metadata files.

:"Apr 19, 2023, 4:11:16 PM",
"name":"3840","browserAgent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36",
"transcription":"the red paper brighten the dim stage",
red paper brightened the dim stage.",

:"data:au 10/&![)3; base64, GkXfo59ChoEBQveBAULYgQRCB4EIQoKEd2VibUKHGQRChYECGFOAZWH/////////FUmpZpkql7GDDOJIATYCGQ2hyb211VOGGQ2hyb211F1Sua7|

7,
"firstLanguage":"EN"}

Figure 12: Example of a JSON file storing the audio metadata collected using the application.

3.4 Exploratory Child Speech Data Collection Activities

The development and deployment of a specialized app for child speech data collection, as
part of the DAVID project, was an initiative undertaken by the University of Galway* to
collect child speech data with Xperi? in Ireland and later extended to BITS Pilani® in India.
This app serves as a cornerstone in addressing a critical need in the research field of child
speech: the creation of clean, usable, and diverse child speech datasets. At Xperi, the app's
deployment was driven by the necessity to develop Al technologies that could interact
effectively with children. Recognizing that children's speech patterns are distinctively
different from adults', the app was designed to capture a wide range of speech data in
various interactive scenarios. This data is invaluable, not just for enhancing Al's ability to
understand and respond to children's speech, but also for contributing to the broader
understanding of child language development and linguistics. The application's use at BITS
Pilani further expanded its impact. Here, the focus was on capturing the unique
characteristics of Indian-accented English among children, reflecting the region's rich
linguistic diversity.

3.4.1 DATA COLLECTION AT XPERI, GALWAY

As a part of the DAVID project, Xperi was involved in the extensive collection of audio
and visual data from children. The participants ranged in age from 3 to 12 years. These

! https://www.universityofgalway.ie/c3i/projects/david/
2 https://xperi.com/
3 https://www.bits-pilani.ac.in/
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young individuals were also encouraged to interact with developmental toys for feedback
collection. Different cameras and recording devices were employed to capture the speech
and visual features of children in diverse settings. This encompassed the 3D data collection,
capturing the speech of children interacting with childcare professionals, toys, and
applications, among other scenarios.

Figure 13: Xperi fullbody 3D scanner.

The visual data acquisition process for this features a photogrammetric 3D scanner. This
device is capable of capturing a series of high-resolution images of subjects or objects
placed within its confines. Subsequently, these images are processed to create a detailed
3D model of the subject. Xperi has developed software which not only processes the
images into 3D models but also employs algorithms to animate these models. Figure 13
illustrates the 3D scanner. Children were instructed to step into the 3D scanning
environment (see Figure 14) and engage with an application designed to recite and
enunciate Harvard sentences. The purpose of this activity was for the children to listen and
then verbally repeat these sentences aloud. Following this interaction, a comprehensive 3D
scan of each child was conducted using the 3D scanner.

Figure 14: Example images of children in the 3D scanner room (images from Xperi data
acquisition).

In addition to the photographic data, there's also an initiative to collect speech data. The
child speech data collection was a joint effort by Xperi and the University of Galway,
designed to efficiently capture diverse speech patterns in children. The project was crafted
collaboratively by researchers from both entities, combining Xperi's technical expertise in
audio processing with the University of Galway's academic knowledge in linguistics and
child development. Speech data from the children was meticulously gathered in a variety
of recording settings, employing microphones strategically positioned around the room
(see Figure 15). These environments were designed to capture the nuances of the children’s
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speech as they interacted with a range of elements such as smart toys, childcare workers,
games, and various applications. This setup ensured a comprehensive audio capture,
reflecting the natural variations in the children's speech across different contexts and
activities. The strategic placement of microphones throughout the room played a crucial
role in obtaining a clear and accurate record of the children's verbal expressions and
interactions in these diverse scenarios.

One specific application, integral to Xperi's data collection protocol, facilitated interactions
with children to record their speech in a reading environment. The application developed
in the previous section (section 3.3) was employed for this task. This read-speech scenario
was particularly designed to capture the children's spoken responses to prompts or passages
displayed on the application. The children were asked to read aloud from the app, which
not only allowed for the collection of speech data in a controlled setting but also provided
valuable insights into their reading and speech patterns. This was captured by many
different microphones in different environmental settings. This scenario was instrumental
in understanding how children of different ages and developmental stages interact with
technology and respond to guided speech tasks. The presence of a childcare worker was
crucial in this setting as well, ensuring that the children remained focused and engaged,
thereby facilitating a more natural and effective data-collection process.

3.4.2 DATA COLLECTION AT BITS PILANI - INDIA

The application (from section 3.3) is currently being utilized in an ongoing research
collaboration project at BITS Pilani in India. Here, a dedicated team of researchers
employed the app as a vital tool in their project aimed at gathering a dataset of Indian-
accented English spoken by children. This endeavour was part of a broader research
initiative to analyse and understand the nuances of English speech patterns among Indian
children, which often carry distinctive regional accents. Their objective is to compile arich
and diverse dataset that accurately reflects the variations and complexities of English as
influenced by India’s varied linguistic landscape.
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Chapter 4

Contribution to Improving TTS Technologies
for Child Speech

This was our first extensive experimental work carried out as a primary task for this thesis
using neural TTS algorithms. One of the key responsibilities undertaken by the University
of Galway in the DAVID project [24] was to provide support to Xperi in the development
of TTS synthesis using Edge-Al technology. Initially, this entailed collaborating on state-
of-the-art TTS models to assess their performance. However, as the project progressed, a
new objective emerged: to expand the child-speech training dataset for TTS systems. The
rationale was that Edge models require optimization, and having access to more extensive
training data can significantly enhance their performance. Consequently, this shift in focus
led to a dedicated research initiative aimed at enhancing TTS technology for child speech.
Therefore, the study focuses on building a viable pipeline for the synthesis of children's
voices with low data requirements, which could also facilitate the creation of large
synthetic datasets to support other child speech research areas like ASR and speaker
recognition [44], [130].

4.1 Tacotron 2-based Transfer Learning Methodology for
Child Speech Synthesis

Our contributions in this work were tailored towards the development and validation of a
training pipeline for finetuning neural TTS models using child speech datasets, which
involved, cleaning a publicly available child speech dataset to provide a usable subset of
approximately 19 hours, implementing a multi-speaker TTS retuning workflow for transfer
learning and performing both subjective and objective evaluations to assess the TTS
model's performance, showing strong correlation and similarity between real and synthetic
child voices. This was the first published research work highlighting the contributions to
TTS for child speech.

4.1.1 SINGLE SPEAKER TTS TRAINING

While Tacotron 2 [28] is recognized as a leading system for TTS, its standard configuration
is optimized for datasets featuring a single speaker, such as the LJSpeech dataset [78],
thereby limiting its output to the vocal traits of the single speaker represented in the training
data. When Tacotron 2 was released, it served as a SOTA and still is being used to draw
comparisons with newer research. In our preliminary experiments, various SOTA TTS
models (as mentioned in Table 3) were subjected to training using a transcribed segment
of the MyST dataset called TinyMyST, but the results obtained didn’t have any meaningful
audio output.
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In TTS, alignment refers to the mapping between the input phonetic or linguistic
representation and the acoustic output. In sequence-to-sequence models with attention,
such as Tacotron, the alignment is learned by the model so that each timestep in the output
sequence (e.g., a frame of audio) corresponds to the appropriate timestep in the input
sequence (e.g., a phoneme or word). An alignment plot can be used to visualize this
alignment. Ideally, you would expect to see a clear diagonal line across the plot, indicating
that each part of the input corresponds to a successive part of the output. Deviations from
the diagonal can indicate issues such as mispronunciations or unnatural prosody.

Table 9: Alignment Plots for Different Single-Speaker Tacotron 2 Training Experiments
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The alignment plots derived from the Tacotron 2 training process are made available in
Table 9. The training type | involved using the original MyST single-speaker dataset to
train Tacotron 2. The plot from this training clearly shows that, even after 200k training
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steps, there is no noticeable alignment. After that, the model was subjected to training with
our cleaned version of the TinyMyST dataset (see Table 8). It seems that the model has a
good grasp of the initial alignment but may struggle with longer sequences. This might be
an indication that the model could benefit from additional training data or a review of its
current training regime, particularly to ensure that it maintains strong alignment throughout
longer sequences. Further experiments were conducted that incorporated transfer learning
with a single-speaker model. The model was first trained with the LJ speech dataset and
then finetuned with the TinyMyST. These experiments revealed certain patterns similar to
those of child speech. An alignment plot of the generated speech from this experiment is
illustrated in training type Il in Table 9. The analysis of the plot indicates that while the
phrases generated had a child-like pitch, the words and phonetic structures were unclear
and indistinguishable. Additionally, the end of each phrase in the speech sample was
characterized by meaningless white or static noise instead of distinct phonemes. This lack
of clarity and coherence becomes more evident after listening to the generated synthetic
speech. To improve further on this, the research progressed to exploring multispeaker TTS,
aiming to synthesize varied child voices and enhance the synthetic speech dataset's
diversity and realism.

4.1.2 MULTISPEAKER TTS TRAINING

While working on the multispeaker TTS research, we came across various multispeaker
TTS models as mentioned earlier in Table 2. However, due to the lack of a well-established
training framework for these approaches at the time of conducting this research, we decided
against pursuing the training of these models using child speech. This decision stemmed
from the challenges and uncertainties associated with implementing training protocols that
were not yet fully defined or optimized. Instead, we focused our efforts on alternative
methodologies that offered more structured and reliable frameworks such as the speaker
verification-based approach, mentioned in the study [20]. Since this approach also utilized
Tacotron 2 with more developed and proven training processes, it was employed to use this
in our primary experiments. We build over this methodology for multispeaker TTS,
however, we also include a two-stage training approach (pretraining and finetuning the
acoustic model) for building more realistic child speech. We also use a different vocoder
(WaveRNN) than used in their approach (WaveNet), which is used as a global vocoder for
working with child speech (section 2.4.2). For the system to generate speech reflective of
multiple speakers, it necessitates modifications to accommodate various speaker identities.
Such enhancements have been realized in the multi-speaker TTS [20], which incorporates
speaker embeddings to represent different speaker identities, feeding them into the
Tacotron as an additional input. Consequently, the multispeaker TTS model [20] is
composed of three distinct neural networks, each dedicated to a specialized task: the
Speaker Encoder for speaker verification [131], the Acoustic model for synthesizing
spectrograms [28], and the VVocoder [85] for creating the audio waveform. This structure
is depicted in Figure 16 below.

speaker

reference SPEAKER ENCODER |

waveform (GE2E LOSS) speaker
embedding

ACOUSTIC MODEL

grapheme or | (TACOTRON)
phoneme —

Log Mel VOCODER
sequence ENCODER HCDNCATHAﬁENT\UN H DECODER }—m (WAVERNN)  — Waveform

Figure 16: Multispeaker training pipeline.
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The speaker encoder creates speaker embeddings by capturing the unique identity traits
from the spoken utterances. VVoices that are alike are positioned closer together in a latent
space representation. Following this, the acoustic model produces spectrograms from text,
while taking these speaker embeddings into consideration. These spectrograms are then
transformed into audio waveforms by the vocoder. During the inference phase, a brief
reference utterance (ground truth) of a child's voice is processed through the speaker
encoder to generate the relevant speaker embeddings. The acoustic model then conditions
its output on these embeddings. Initially, the acoustic model underwent training solely with
adult speech data, particularly using the ‘clean’ dataset from Librispeech. This phase of
training continued until convergence was observed at around 250k steps. Subsequently, the
model was finetuned using the TinyMyST dataset, which contains child speech. This
finetuning process was extended for an additional 750k steps. More comprehensive
information about this process is available in our published paper in Appendix A.

decoder timesteps

%0

decoder timesteps
., 5

00 » 0

® e

» ™

0 R0 0

E §

encoder timesteps
g 8 E

encoder timesteps

¥ ¥ & @

-

Training at step 250k (Dataset: Librispeech) Training at step 260k (Dataset: TinyMyST)

decoder timesteps
T

o

decoder timesteps

x oo

=0 =o

P

»a 0 o

iz

t 2 § i

encoder timesteps
encoder timesteps

Training at step 270k (Dataset: TinyMyST) Training at step 300k (Dataset: TinyMyST)

decoder timesteps decoder timesteps

= 10

= e 2 300 20 0 =0 - 20 e

encoder timesteps
encoder timesteps

Training at step 450k (Dataset: TinyMyST) Training at step 750k (Dataset: TinyMyST)

Figure 17: Alignment plots at different training steps for multispeaker Tacotron 2 involving transfer
learning from adult to child speech.

Figure 17 displays the alignment plot for encoder-decoder timestamps. Initially, training
on the LibriSpeech dataset for 250k steps yielded a strong alignment plot. The alignment
initially weakened when switched to the TinyMyST dataset, improving as training
progressed. The model underwent testing at various checkpoints, every 50k iterations,
some of which are highlighted in Figure 17. Despite some alignments appearing similar,
overall improvement in synthesized child voices was noted over time, assessed subjectively
by listening to the output. The training was stopped at 750k steps, as no further significant
improvements were observed after 700k steps, and the output waveform showed no
additional enhancements. Some samples from this research work are presented online on
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our GitHub page!. At this point, the vocoder is used to generate audio waveforms for
performing the subjective evaluation.

4.1.3 SUBJECTIVE EVALUATION

Recognizing the novelty of our research in synthetic child speech, we determined that
conventional MOS studies [132], [133], [134] would not suffice for assessment. Hence, we
crafted a tailored MOS study, integrating aspects specifically relevant to child speech
characteristics. To assess the phonetic range of our child's speech TTS, we utilized the
Harvard sentences to evaluate the subjective quality of synthesized audio. Our evaluation
employed a MOS-like method with various scoring categories. The evaluation process was
streamlined through the use of a shared OneDrive environment, where all synthetic voices
were accessible to evaluators, accompanied by a spreadsheet detailing the utterance I1Ds
and transcript of the synthesized child's voice. This approach circumvented the challenges
of understanding recorded child audio without transcripts, as some child speech can be
unclear or nonsensical. Including transcripts allowed evaluators to correlate what they
heard with what they read, enabling a more accurate assessment of the coherence between
spoken phonemes and written graphemes.

Table 10: MOS (from 1 to 5) Explained for Speech Intelligibility, Voice Naturalness and
Voice Consistency

Voice Consistency

Speech Voice -
Score Intelligibility | Naturalness Start of Middle of End of phrase
phrase phrase
5) Clear Co$3|stent Clear Start Clear Mid Clear End
one
4 Mostly Clear | Minor Disjoint | Understandable Minor Minor
y ! Variation Distortion
Partial Weak Notable Significant
) Clarity Consistency Unclear Start Distort Noise
@) Muffled | Mixed Timbre | Distorted Start Mayor Unintelligible
Slurring
(1) | Unintelligible | No Consistency Incoherent Incoherent Incoherent

Evaluators were asked to rate the synthetic audio, which they listened to via headphones
or earphones in a quiet setting on a scale of 1 to 5 across different categories in two phases
which were developed over time. These categories included Speech Intelligibility, Voice
Naturalness, and Voice Consistency, with the latter having three sub-categories: Start,
Middle, and End of Phrase Quality. For this thesis, we have condensed the table explaining
the MOS ratings (1 to 5) for each category in Table 10. However, the full version of this
table, along with comprehensive details, can be found in Appendix A of our published
work. This was also the first-ever MOS study conducted with synthetically generated child
speech and we built this methodology for evaluation as a baseline for our future work. The
results from this MOS study are presented in Table 11. A comparative analysis of the
baseline MOS on Natural MyST and the synthetically generated utterances is also
performed. There is some information loss observed at the end of most sentences
containing inarticulate and unintelligent information or noise. The reason for this
information loss can be redirected back to the child dataset used for training.

! https://c3imaging.github.io/ChildTTS/
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Table 11: MOS Ratings Obtained From Subjective Evaluation With 95% Confidence
Interval for Real and Synthetic Child Speech

Speech Voice Voice
Intelligibility Naturalness Consistency
Real Speech (from MyST) 4.21+0.42 4.05+0.34 4.08 £0.54
Synthetic Speech (Tacotron 2) 3.95+0.30 3.8910.32 3.96 £ 0.32

4.1.4 OBJECTIVE EVALUATION

An objective evaluation methodology is also proposed for Voice Naturalness, Speaker
Similarity, and Speech Intelligibility. We calculate objective Naturalness evaluation
using a pretrained MOSNet, Speaker Similarity evaluation using a speaker verification
system, and objective Intelligibility evaluation using a pretrained ASR system.

Voice Naturalness Evaluation Using a Pretrained MOSNet: MOSNet [133] predictions
yield a high correlation to human ratings. As MOSNet was trained on adult speech, it is
unlikely that it will generalize well for child speech. This objective evaluation was
performed to see the correlation between reference child audio and synthetic child audio.
The study revealed that the MOSNet score for reference child speech was 2.91, while
synthetic child speech scored 2.60. The marginal MOS difference of 0.31 between these
scores indicates a close correlation between real and synthetic child speech.

Speaker Similarity Evaluation Using a Speaker Verification System: Speaker
similarity between synthesized and real speech is measurable using a Speaker Verification
(SV) system [131]. The same pretrained speaker encoder from the TTS model training was
employed alongside a tool named Resemblyzerfor extracting and visualizing speaker
embeddings. Resemblyzer calculates similarity through cosine distance between
embeddings. Additionally, we visualized this similarity in a 2D projection using the T-
distributed stochastic neighbour embedding (T-SNE) [135], as shown in Figure 18. In this
projection, 'gt' denotes ground truth child speech, while 'ss' represents labels for synthetic
speech for the same child speakers. 'Adult_Male' and 'Adult_Female' labels correspond to
randomly chosen male and female speakers from the Librispeech Dataset. In this 2D
projection of speaker embeddings, Male and Female adult speakers are noticeably
separated from each other and from child speakers.

L https://github.com/resemble-ai/Resemblyzer
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Figure 18: T-SNE 2D projections of speaker embedding for real child speech, synthetic child speech
and adult speech. The child speech region, with real and synthetic child speech embeddings are
marked inside a rectangle.

The cosine distance calculations between speaker embeddings revealed that the similarity
between most adult and child speech lies in the range of 0.3-0.4. In contrast, the similarity
between most synthetic and real child speech falls in the range of 0.65-0.85. With an
average speaker similarity of 81% between synthetic and real child speech, it indicates that
synthetic child speech closely resembles real child speech.

Obijective Intelligibility evaluation using a pretrained ASR system: A pretrained?
wav2vec2 model [17] evaluated synthetic speech intelligibility by comparing transcriptions
of 120 real and synthetic child utterances. The model's performance was also assessed with
adult speech from the LibriSpeech (test_clean) dataset, showing a WER of 3.43 for adult
speech, reflecting the wav2vec2 model's training on such data. However, the WER rises to
15.27 for real child speech and further to 25.63 for synthetic utterances. The ASR model
accurately recognized 75% of the synthetic speech, indicating a significant 10-point
increase in WER compared to real child speech.

4.2 Multispeaker Fastpitch Methodology for Child Speech
Synthesis

Fastpitch [21] integrates several unique features such as a duration predictor and self-
alignment mechanism, which contribute to its advantages over Tacotron 2 [28] in certain
aspects of TTS synthesis. Fastpitch is known for its faster inference speed, improved
prosody control, and enhanced naturalness, which are crucial for capturing the dynamic
range and expressiveness of child speech. The pitch prediction and duration prediction
modules within Fastpitch provide more accurate control over the speaking rate and pitch,
which are particularly variable in child speech compared to adults. These features justify
Fastpitch as a superior approach for child speech synthesis, addressing some of the
limitations that may be present in Tacotron 2's methodology, where pitch and prosody
might not be as finely tuned. The motivation for this research is to overcome the challenges
in generating synthetic child speech by providing more control over the prosody and
duration of the generated speech. We also aim to overcome the challenges previously seen
in the Tacotron 2 research. A transfer learning approach (Similar to section 4.1) to finetune
a multi-speaker TTS model is applied with a cleaned version of the MyST dataset (referred

! https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md
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to as MyST_2 in Chapter 3) using Fastpitch. An objective assessment, similar to that in
section 4.1.6, has also been carried out to evaluate the naturalness, intelligibility, and
speaker similarity of the speech generated by Fastpitch, and these findings are compared
with those obtained using the Tacotron 2 method.

4.2.1 SINGLE SPEAKER TRAINING

In these experiments, we used the LJ Speech dataset [78] for finetuning with a single
speaker. Initially, the model was trained on LJ Speech and then fine-tuned with one speaker
from the MyST dataset. This approach resulted in quite noisy audio output. We also tried
training on LJ Speech and then finetuning with the entire MyST dataset as if it were a single
speaker, but this did not produce child-like speech. Consequently, we decided not to pursue
single-speaker finetuning further.

4.2.2 MULTISPEAKER TRAINING
LibriTTS Adult MysST child
speech dataset speech dataset

i

Text, Mel, Global Speaker E:\T::tning Text, Mel, Global Speaker WaveGlow
Pitch Embedding trained Pitch Embedding T
checkpoint
inference
{ FASTPITCH } [ FASTPITCH \ WAVS
a) Pretraining (Training from b) Finetuning (Resumed training
scratch till 250k Iterations) from 250k to up to 520k iterations)

Figure 19: Transfer learning pipeline: a) Pretraining: Model being trained with LibriTTS dataset for
up to 250k iterations. b) Finetuning: Resuming the acoustic model training with the MyST dataset
from 250k iteration onwards up to 520k iterations.

The transfer learning pipeline was adopted from our previous approach using Tacotron 2
[29]. Figure 19 describes the transfer learning pipeline adopted for Fastpitch [21]. Fastpitch
uses the global speaker embeddings [136], which means that it learns a distinct embedding
for each speaker during training. These embeddings are learned along with the other
parameters of the model. This is in contrast to some other systems where speaker
embeddings might be generated by a separate, external speaker encoder (as seen in some
implementations of Tacotron 2). By learning speaker embeddings within the model itself,
Fastpitch can more seamlessly integrate the characteristics of different speakers into its
speech generation process. This internal approach can lead to more coherent and natural-
sounding speech synthesis, especially when the model is trained with a diverse set of
speakers. In this work, the model is first trained with the LibriTTS dataset (585 hours) for
up to 250k iterations until a consistent low loss threshold is achieved, and the model starts
to converge. After that, the model was finetuned from 250Kk iterations onwards for up to
520k additional steps using the MyST _train dataset (55 hours). These datasets were earlier
described in Table 8.
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Table 12: Loss Curves for Multispeaker Fastpitch Training

Loss Curve Observation
S

Loss
decreased
steadily and
stabilized at
250k steps.

40K

I. Initial Training: Training with LibriTTS up to 250k iterations.

Loss initially
increased,
then declined
and
plateaued;
overfitting
was observed
post 550k
steps.

320k 340k 360k 380k 4001 20k 440k 460k 4804 k

training on MyST _train from 250k up to 520Kk iterations.

260k

I1. Finetuning: Resume

In our multispeaker TTS training experiments, the model initially trained on the LibriTTS
dataset showed a loss curve depicted in Table 12.1. The loss decreased gradually for the
first 2000 warmup steps, then steadily until stabilizing at an average of 0.3 around the 250k
steps mark. With no further loss improvements, training was paused for finetuning.
Finetuning then continued on the MyST _train dataset from the 250k steps up to 520k steps
(see Table 12.11), where loss initially increased before starting to decline around the 260k
epoch, eventually plateauing at the 520k step with no significant further improvement. This
was confirmed by listening to the audio files generated at every 50k epoch interval. Post
550k epochs, the model showed signs of overfitting, learning noise features from the MyST
dataset, which degraded the audio quality. Using this methodology, we have also released
a Synthetic child speech dataset generated from this research, which will be discussed in
more detail in Chapter 5.

4.2.3 OBJECTIVE EVALUATION

We conducted objective evaluations, specifically focusing on the aspects of Naturalness,
Intelligibility, and Speaker similarity (as previously done in section 4.1.4) to provide a
comparative analysis with our previous work involving child speech synthesis using the
Tacotron 2 model.

Objective Naturalness Evaluation Using the Pretrained MOSNet [133]: Table 13
displays the MOS for speech samples assessed using the pretrained MOSNet model. The
Fastpitch model's synthetic speech surpassed both the original and Tacotron 2-generated
versions in quality, showing a strong correlation between synthetic child speech and real
child speech.
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Table 13: Objective Evaluation Using Pretrained MOSNet for Fastpitch

Dataset MOS
Adult speech (Librispeech test_clean) 3.78 £ 0.07
Original Child Speech [MyST] 291 £0.07
Tacotron 2-based synthetic child speech [29] 2.60 £ 0.06
Fastpitch-based synthetic child speech [21] 3.10+£0.12

Objective Intelligibility Evaluation Using a Pretrained wav2vec2 ASR System: The
wav2vec2 base model* was used to measure the objective intelligibility of the Fastpitch-
generated synthetic child speech. Table 14 details the WER across various speech datasets.
Our implementation using the Fastpitch model yielded a WER of 17.61, closely aligning
with the WER of original child speech from the MyST dataset. This performance also
exceeded that of Tacotron 2-generated child speech.

Table 14: Obijective Intelligibility Evaluation Using a Pretrained ASR for Fastpitch

Dataset WER
Adult Speech (Librispeech test_clean) 3.43
Original Child Speech [MyST] 15.27
Tacotron-2 based synthetic child speech [29] 25.63
Fastpitch-based synthetic child speech [21] 17.61

Speaker Similarity Verification Using a Pretrained Speaker Verification System:
Similar to Tacotron 2, the pretrained speaker encoder [131] from Resemblyzer? was used
to extract and visualize the speaker embeddings. The 2D plot for Fastpitch speaker
embedding visualization (Figure 20) looks very similar to that of Tacotron 2 (Figure 18).
This clustering analysis indicates a correlation among child speakers, encompassing both
real and synthesized speech, in contrast to the more dispersed adult male and female
speakers.

' Speakers
& adult_female & myst_child2
& adult_male & syn_childl
myst_childl syn_child2
»

Figure 20: T-SNE embedding projections for actual child speech (*myst_child1'-boy and 'myst_child2'-
girl), Fastpitch-generated synthetic child speech (‘syn_child1l' and ‘syn_child2"), and adult speech
(*fadult_female' and "adult_male') speakers.

! https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md
2 https://github.com/resemble-ai/Resemblyzer
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To quantify the similarity between real child speech and synthetic child speech, we used
cosine similarity measures. These measures showed that child-to-adult speech similarities
fall between 0.34 to 0.53, while synthetic child speech closely matches real child speech,
with similarities ranging from 0.63 to 0.98. The synthetic and real child voices share an
average similarity of 77%. This percentage is a bit lower than the 81% achieved for the
Tacotron 2 similarity measure. We believe this could be due to an increase in the training
dataset from 19 hours in Tacotron 2 to 55 hours in Fastpitch. This increase in data also
encompasses more speakers and increases the complexity of acoustic model training.

4.3 Conclusion and Final Remarks

Our primary contribution with Tacotron 2 showcases a significant advancement in the
synthesis of child speech with limited data, presenting a viable solution to the challenge of
synthesizing diverse and natural-sounding child voices. The research not only furthers the
capabilities of TTS models but also opens pathways for creating large synthetic datasets
that could serve various applications within the field of child speech research, such as ASR
and speaker recognition. Our subjective assessment reveals a noticeable loss of information
towards the end of the generated speech. This is also reflected in a lower MOS for the 'End
of Phrase' category under Voice Consistency. We also demonstrate the successful
application of the Fastpitch TTS model in synthesizing child voices with limited training
data. This is a significant advancement in the field of synthetic child speech generation.
Additionally, we release a synthetic dataset generated from this work which will be
discussed in more detail in Chapter 6. We acknowledge the lack of subjective evaluation
in assessing the 'Naturalness', 'Intelligibility’, and 'Speaker Similarity' of the generated child
speech using Fastpitch. The decision to forgo a subjective MOS evaluation was primarily
driven by time constraints. While objective measures like MOSNet provide valuable
insights, they may not fully capture the nuances of human perception.

While the MyST dataset provides a basis for training, its scope and diversity could limit
the model's ability to generalize across various child speech characteristics. Therefore, we
believe that the creation of more diverse and extensive child speech datasets is essential for
future progress. With this in mind, we decided to delve into ASR research for child speech.
The aim is to train state-of-the-art ASR models for improved transcription of the
untranscribed MyST dataset (197 hours) and other child speech datasets from Xperi data
acquisition. A detailed experimental study for both Tacotron 2 and Fastpitch
methodologies for child speech synthesis along with the proposed evaluations are
explained in detail in our published paper attached in Appendix A and Appendix D.
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Chapter 5

Contribution to Improving ASR Technologies
for Child Speech

In the initial stages of the DAVID project, the emphasis was on developing TTS
technologies for Edge-Al applications. However, approximately a year into the research, it
was observed that the available public datasets for child speech were of poor quality. This
revelation led the project towards investigating ASR techniques as a strategy to clean up
public child-speech datasets which were of poor quality. We aimed to use ASR
technologies to employ it as a transcription tool for providing better annotations and
creating larger child speech datasets. However, it was soon discovered that ASR models,
predominantly trained on adult speech, were poor at transcribing child speech data
effectively. It was evident that there was a need to research state-of-the-art neural ASR
models to better accommodate child speech. Given that our industry partners lacked
expertise in the latest neural models that had emerged since the start of the DAVID project,
a comprehensive evaluation of these models' adaptability to child speech became
necessary. The objective set by one industry partner to gather child speech data for training
Edge-Al models was also impeded by the COVID pandemic, leading to considerable
delays. Consequently, the project's direction shifted towards the development of generative
child-TTS technologies. Therefore, investigating the potential of child-speech ASR
became important to enhance the DAVID project's capabilities in assessing the quality of
generated TTS and annotating newly collected child speech data by the industry partner.

In initiating our exploration of ASR systems, our review extended various methodologies
aimed at optimizing ASR for children's speech [3], [4]. Among the diverse methodologies,
several stood out due to their effectiveness and adaptability to the nuanced characteristics
of child speech. These methodologies encompass Transfer Learning methods [11], [137],
[138], [139], Hidden Markov Models (HMMs)-based methods [52], [140], [141],
Augmentation-based methods [107], [142], [143], [144], [145], Self-Supervised learning
(SSL) [146], [14T7], [148], [149], [150], and semi-supervised approaches [18], [149], [151].
Given the distinct challenges associated with child ASR, including data scarcity and the
inherent variability in child speech, Transfer Learning emerged as a particularly effective
method. This approach leverages the abundance of adult speech data to pretrain models,
which are subsequently finetuned on child speech datasets. Such a methodology not only
addresses the issue of limited child speech data but also allows the model to initially learn
from the acoustic features present in adult speech. Consequently, our experimental
framework is designed around a series of experiments that involve pretraining on adult
speech followed by finetuning on child speech.

In this chapter, we address the challenges in child speech recognition by using the novel
approach of wav2vec2 [17]. An in-depth experimental analysis is performed including
pretraining and finetuning on different seen and unseen child speech datasets. We also
clean and prepare datasets for child speech ASR (which is also made available for research
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use). Finally, we provide a comparative analysis with the previous SOTA research on a
similar distribution of datasets. Additionally, the evaluation of Whisper models [18] for
child speech recognition is presented, showcasing their adaptability to the distinct nuances
of child speech. Significant enhancements in ASR performance were observed when
Whisper models were finetuned on child speech datasets, surpassing results from models
without finetuning. This was further evidenced by testing Whisper models [18] with
various non-native English child speech accents, including American, British, German,
Italian, Swedish, and Chinese. Subsequent finetuning experiments were also performed
over a combination of non-native child speech datasets. We report substantial
improvements in performance on various non-native English child speech datasets
compared to previous state-of-the-art results. Lastly, we adapted Conformer-Transducer
models [16] for the task of child speech recognition in a similar way to Whisper and
wav2vec2. The key was the comparative analysis of these models, all finetuned on the same
child speech data, which could provide valuable insights into the efficacy of these models
for child speech recognition.

5.1 Self-Supervised Learning Approach Using wav2vec2 ASR

This section details a series of experiments and findings focused on using the SSL-based
wav2vec2 model [17], to enhance ASR for child speech. We use a combination of adult
and child speech datasets for pretraining and finetuning to find the best experimental
configuration to work with child speech. The pretraining was conducted on a mix of
unlabelled child and adult speech datasets. It’s also worth noting that wav2vec2’s
pretraining architecture transitions from a 'base’ to a 'large’ configuration typically
involving scaling up model parameters to handle more extensive datasets effectively. The
'base’ model is designed for efficiency and quick training on smaller datasets (such as
MyST_complete and Librispeech), whereas the 'large’ version, with a greater number of
layers, is designed to capture intricate patterns in larger volumes of data (such as
Librilight). For finetuning, subsets of varying lengths were created from the MyST
(MyST_10m, MyST_1h, MyST_10h, MyST_55h) and PFSTAR (PFS_10m, PFS_1h,
PFS_10h) datasets to determine the optimal data requirement for child speech experiments.
These ranged from 10-minute to 55-hour segments, formed by randomly selecting files
from larger sets (MyST_55h and PFS_10h). Finally, the evaluation of ASR was based on
the WER across various child speech datasets, MyST test (10hrs), PFS_test (2hrs), and
CMU_Kids (9hrs), and adult speech LibriTTS dev-clean dataset (8.9 hrs). Experiments
were categorized into five groups: A, B, C, D, and E. These experiments are grouped in
Table 15, encompassing 32 experiments with various pretraining and finetuning dataset
combinations. The goal was to explore cross-domain WER correlations across pretraining
and finetuning datasets. Notably, no models were pretrained solely on child speech due to
the lack of ample publicly available data for effective learning of child speech
representations.

Table 15: WER Obtained for wav2vec2 Finetuning Experiments Over MyST, PFSTAR and
CMU_Kids Datasets

Groups Pretraining | Finetuning WER WER WER WER
dataset dataset MyST _test | PFS_test | CMU_KIDS | dev_clean
1 - LS_10m | 31.48 30.05 33.38 15.90
2], Librispeech ™ "™ 500 | 17.82 15.96 18.73 4.16
3 LS_960h | 15.41 11.20 16.33 3.40
4 LS _10m | 26.47 27.14 29.37 15.35
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5 Librilight | LS_100h | 13.15 1163 | 16.18 3.79
6 LS_960h | 12.50 8.56 14.85 3.28
7 MyST_10m | 28.84 4134 | 34.18 21.45
8 Librispeech MyST 1h | 18.75 31.84 23.13 13.91
9 MyST _10h | 13.46 2868 | 19.59 10.94
o) MyST 55h | 8.13 1477 | 1647 7.72
11 MyST _10m | 33.01 4436 | 39.91 46.45
12 ibrilignt | MYST1h [ 1491 2621 | 18.74 1159
13 MyST 10h | 12.92 2505 | 17.72 10.04
14 MyST 55h | 7.51 1246 | 1525 6.43
15 - MyST_10m | 29.16 4571 | 3756 35.39
16| '-'It\’;'sgie‘:h MyST 1h | 21.89 3853 | 29.03 20.45
17 _Co%ple—te MyST_10h | 16.18 3295 | 25.06 16.83
18 MyST 55h | 10.34 2547 | 23.15 13.48
19 PFS_10m | 35.91 1643 | 3353 30.43
20 Librispeech PFS 1h 33.52 7.36 29.55 16.61
2| PFS_10h | 31.86 3.48 27.49 13.95
22 PFS_10m | 37.10 1678 | 3513 23.85
23 Librilight | PFS_1h | 30.81 1419 | 2854 21.89
24 PFS_10h | 27.17 350 21.35 11.60
25 LS_960h,
MyST 55 | 818 1217 | 1412 1.24
26 LS_960h,
PFS 100 | 15:42 3.74 15.31 1.41
27 Librispeech | MyST 55h,
PyFS__10h 7.94 2.91 15.97 7.64
28 LS_960h,
MyST 55h, | 8.13 3.12 13.76 1.20
. PFS_10h
29 LS_960h,
MyST 55 | 806 9.31 13.20 1.34
30 LS_960h,
oFS 100 | 1318 3.17 13.19 1.32
3l Librilight | MyST 55h,
PyFS__10h 7.42 2.99 14.18 5.79
2 LS_960h,
MyST 55h, | 8.17 3.33 12.77 1.40
PFS_10h

Group-A: The pretrained BASE and LARGE models from wav2vec2, trained with 960
hours of Librispeech and 60k hours of Librilight dataset were finetuned with 10 minutes,
100 hours, and 960 hours of Librispeech. The objective was to observe the performance of
child speech without any being used in training. Models showed a decrease in WER with
an increase in finetuning dataset size. Interestingly, only a small difference in WER was
observed between the BASE and LARGE models, despite the LARGE model having 60
times more training data. We also observed Significant finetuning improvements from 10
minutes to 100 hours of adult speech, with diminishing returns beyond 100 hours.
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Group-B: This group used similar pretraining configurations as Group-A. The finetuning
used 10 minutes, 1 hour, 10 hours, and 55 hours of MyST child speech data. The aim was
to introduce a single child speech dataset to the model training and observe its impact
during inference on child speech. Lower WERs were achieved for child speech in
comparison to Group A. A trend of decreasing WER with the increasing finetuning data
was noted. We also observed that as little as 1 hour of child speech data showed
improvements comparable to 100 hours of adult speech data and similarly, 10 hours of
child speech matches 960 hours of adult improvements. Domain mismatch was also
observed with weaker improvements on the PFS_test and CMU_Kids compared to the
MyST _test.

Group-C: This group involved pretraining with Librispeech and MyST_complete. The
goal was to integrate child speech data during the pretraining phase of the wav2vec2 model
along with adult speech. Finetuning employed the same MyST data volumes as in Group
B. This approach resulted in increased WERs compared to BASE models from Group B,
indicating that adding child speech in pretraining was not effective. As a result, finetuning
with Large configurations was not conducted.

Group-D: This group mirrored Group-A's BASE and LARGE adult speech pretraining but
excluded MyST_Complete due to its lack of impact in group-C. For finetuning, the
PFSTAR dataset, segmented into 10 minutes, 1 hour, and 10 hours, replaced MyST. While
the PFS_test showed lower WERSs, increases in WER were observed on other unseen
datasets highlighting domain mismatches.

Group-E: Pretraining used BASE and LARGE configuration as group-A and
experimented with mixed finetuning datasets including LS 960h+MyST_55h,
LS_960h+PFS_10h, MyST_55h+PFS_10h, and LS_960h+MyST_55h+PFS_10h
combinations. The aim was to test various training combinations on test datasets
comprising child speech. This group showed the best WERs across all datasets, indicating
the importance of domain match in finetuning data. Both BASE and LARGE
configurations showed similar performance with cross-domain dataset finetuning.

To conclude, the pretraining models with adult speech data alone outperform those using a
mix of adult and child speech, especially when incorporating low-quality datasets like
MyST, which diminishes ASR model performance across all tests. Domain differences are
significant, with PFSTAR showing higher quality than MyST and CMU_Kids, though the
latter two align more closely. Cross-domain child speech finetuning yields the best
outcomes. The wav2vec2 BASE configuration, needing far less data than the LARGE
variant, suits low-data scenarios well, with the LARGE's slight improvements not
compensating for its higher computational cost. Finetuning with 100 hours of adult speech
strikes a balance between effort and accuracy, but even 10 hours of child speech data
finetuning surpasses using extensive adult speech data, with around 65 hours of mixed-
domain child speech data proving optimal.

5.1.1 CoMPARISON WITH PREVIOUS SOTA APPROACHES

Previous researchers have employed different methods to clean and use the data, but the
lack of a standardized approach makes direct comparisons challenging. However, our
research using the wav2vec2 approach has shown promising results, significantly
improving over previous studies on the same datasets as detailed in Table 16. Additionally,
our method of 'cleaning’ the test datasets is thoroughly explained earlier in Chapter 2,
providing a foundation for future research comparisons.
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Table 16: Comparison Between Previously Obtained SOTA Results and Our Results on the
MyST, PFSTAR and CMU_Kids Dataset

SOTA Papers Method WER WER WER
Type MyST | PFSTAR | CMU_Kids

TDNN-F + Augmentation [152] Supervised - - 16.01
Hybrid HMM-DNN Transfer Learning Supervised - - 19.33
[138]
DRAFT [148]:

" wav2vec2 SSL 16.70 - -

= HuBERT 16.53
Transformer + CTC + Greedy [153] Supervised | 16.01 - -
W2V2 + source-filter warping + LM [139] SSL 4.86
Our Work SSL 7.42 2.91 12.77

Our work provided a baseline for future experiments. The experimental framework
described for finetuning the wav2vec2 model was also utilized to train the Whisper and
Conformer-Transducer models to provide a comparative analysis (will be discussed in
more detail in consecutive sections). We also use this experimental framework as an
objective evaluation method for validating speech augmentation experiments which will
be discussed in section 6.2. The complete working methodology along with the detailed
experimental results for the wav2vec2 experiments is presented and published in IEEE
Access titled “A wav2vec2-based Experimental study on Self-Supervised Learning
Methods to Improve Child Speech Recognition” with a copy included in Appendix B of
this thesis.

5.2 Supervised Learning Approach Using Whisper ASR

This is a follow-up work based on the experimental framework proposed with wav2vec2
experiments. The original Whisper models [18] were initially evaluated on different child
speech datasets, including MyST test, PFS_test, and CMU_test without any initial
finetuning. The models were categorized by size (Tiny, Base, Small, Medium, Large, and
Large V2) and further divided into two language training versions: a multilingual one and
an English-only version (denoted by '.en' in the name). Including English models also
allows for comparing the performance of same-language training with child speech datasets
against multilingual models with non-English datasets. The results from this experiment
can be seen in Table 17.

Table 17: WER Obtained for Whisper Models (No-Finetuning)

ID Models MyST _ PFS_ CMU_ | dev-clean
test test test
1 Tiny 40.09 159.57 30.63 10.85
2 Tiny.en 33.02 47.11 27.32 8.62
3 Base 32.14 100.07 25.03 8.14
4 Base.en 29.15 45.70 20.75 7.18
5 Small 26.22 111.75 18.52 6.43
6 Small.en 26.72 39.00 16.82 6.06
7 Medium 25.11 80.97 12.67 5.58
8 Medium.en 28.06 35.25 14.00 6.20
9 Large 25.24 84.52 13.70 5.53
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10 | Large-V2 25.00 73.68 12.69 5.40
11 | w2v2-base (Table 15.3) 15.41 11.20 16.33 3.40
12 | w2v2-large (Table 15.6) 12.50 8.56 14.85 3.28

Note: w2v2-base (ID_11) and w2v2-large (ID_12) are equivalent to model 3 and model 6 from Table 15,
which are shown here to provide a comparison with whisper models.

These Whisper models (without finetuning) showed varying performance on the child
speech datasets. Larger models generally performed better, with English-only models
outperforming multilingual ones in language-specific tasks. Despite their effectiveness in
adult speech recognition, these models performed poorly on child speech without
finetuning. In contrast, wav2vec2 models (with no child speech finetuning) generally
performed better on child speech compared to non-finetuned Whisper models. The best-
performing models (i.e. Medium, Medium.en and Large-v2) from this initial evaluation
were selected for further finetuning with child speech datasets. Three subsets of
experiments involved finetuning with MyST_55h, PFSTAR_10h, and a combination of
both datasets. The finetuned Whisper models were compared with wav2vec2 models that
had also been finetuned on similar distribution of child speech datasets as can be seen in
Table 18 which provides the WER for the finetuning experiments.

Table 18: WER obtained for Finetuning Whisper and wav2vec2 Models With Child Speech

Datasets
ID Models MyST_ PFS_ CMU_ dev-clean
test test test
MyST (55 Hours) Finetuning:
1 | Medium 11.66 19.76 16.84 5.62
2 Medium.en 11.81 17.83 15.07 6.48
3 | Large-V2 12.28 10.88 15.67 4.82
4 | w2v2-base (Table 15.10) 8.13 14.77 16.47 7.72
5 | w2v2-large (Table 15.14) 7.51 12.46 15.25 6.43
PFSTAR (10 Hours) Finetuning:
6 | Medium 16.18 3.15 16.57 5.33
7 | Medium.en 15.84 3.14 15.53 5.28
8 | Large-V2 15.79 2.88 15.22 5.10
9 | w2v2-base (Table 15.21) 31.86 3.48 27.49 13.95
10 | w2v2-large (Table 15.24) 27.17 3.50 21.35 11.60
MyST (55 Hours) + PFSTAR (10 Hours) Finetuning:
11 | Medium 12.22 2.98 16.05 5.40
12 | Medium.en 12.33 3.32 15.08 4.88
13 | Large-V2 13.34 4.17 17.11 4.97
14 | w2v2-base (Table 15.27) 7.94 291 15.97 7.64
15 | w2v2-large (Table 15.31) 7.42 2.99 14.18 5.79

Note: Results for wav2vec2 models with IDs 4, 5, 9, 10, 14, and 15 are taken from Table 15, which are
presented here for comparison with Whisper models.

Finetuning Whisper models on child speech datasets notably enhanced their accuracy, with
MyST train finetuning yielding significant WER improvements, particularly on the
MyST test and PFS_test datasets. Similarly, PFSTAR_train finetuning boosted WER on
the PFSTAR _test dataset, although it had a lesser impact on other datasets. Utilizing both
MyST and PFSTAR for finetuning enhanced model performance on datasets of similar
distributions while maintaining strong WER on unseen datasets. Overall, Whisper models
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improve ASR across adult and child speech, showing versatility across various finetuning
datasets and unseen datasets. In contrast, wav2vec2 excels with finetuning-specific
datasets, offering superior performance in task-specific applications. The wav2vec2
finetuning achieved lower WER on the MyST _test dataset and, when finetuned with a mix
of child speech datasets, exhibited good performance across all child speech datasets.
Furthermore, wav2vec2's smaller model size and its requirement for ten times less training
data than Whisper make it an ideal choice for deployment on edge devices. This distinction
highlights Whisper's broad applicability and wav2vec2's optimization for specific tasks,
underlining the strategic choice between the two depending on the application context and
deployment constraints. The complete working methodology along with the detailed
experimental results and comprehensive discussion of this topic is presented and published
in the Interspeech 2023 Conference titled “Adaptation of Whisper Models to Child Speech
Recognition”, a copy of which is made available in Appendix C of this report.

5.3 Comparison Between wav2vec2, Whisper and Conformer
Models

The Conformer [16] model's codebase and training were undertaken by a fellow PhD
student, Andrei Barcovschi, while my contribution focused on designing experiments,
preparing datasets, and providing a comparative analysis with the wav2vec2 and Whisper
approaches. This work represents a continuation of our previous efforts in dataset
preparation, enabling comprehensive comparisons among the three approaches. We first
evaluate the original conformer transducer models provided by Nvidia® on different child
speech datasets without any finetuning involved and later these models were finetuned on
different combinations of child speech datasets (MyST and PFSTAR) to provide a
comparison with Whisper [18] and wav2vec2 [17] approaches.

Table 19: Comparison Between Conformer, Whisper and wav2vec2 Models (Without Any
Finetuning on Child Speech)

D ASRs Models MyST _test PFS_test CMU_test
1 Small 21.34 12.68 16.05
2 | conformer- | Medium 24.99 11.58 17.51
3 [ Transducer | Large 25.91 8.94 15.06
4 Xlarge 24.42 8.22 14.83
S Small.en (Table 17.6) 26.72 39.00 16.82
6 . Medium (Table 17.7) 25.11 80.97 12.67
Whisper -
7 Medium.en (Table 17.8) 28.06 35.25 14.00
8 Large-V2 (Table 17.10) 25.00 73.68 12.69
9 w2v2-base (Table 15.3) 15.41 11.20 16.33
10 | WaVaveeZ I orlarge (Table 15.6) | 12.50 8.56 14.85

Note: Whisper and wav2vec? results were previously presented in Table 15 and Table 17. They are made
available here for comparison with Conformer models.

Table 19 displays the WERs of the original Whisper, wav2vec2, and Conformer-transducer
models on child speech datasets without any initial finetuning. There's a noticeable trend
of high WERs, around 25%, in the MyST test set for most Whisper and Conformer-

L https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/asr/README.md
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transducer models, except for wav2vec2 models, which show about 10% lower WERSs.
Smaller Conformer-transducer models outperform their Whisper counterparts, especially
on child speech datasets. However, larger Conformer-transducer models lose this edge,
while larger Whisper and wav2vec2 models demonstrate better performance, indicating a
potential loss of generalization in larger Conformer-transducer models. The ‘Large’ and
‘Xlarge” Conformer-transducer models show competitive results in most cases. Whisper
models have generally higher WERSs, except for the ‘Medium’ and ‘Large’ models which
perform well on all datasets. The ‘w2v2-large’ model stands out with the lowest WERs
among all evaluated models.

Table 20: WER for Different Whisper, wav2vec2 and Conformer Models Finetuned on
MyST, PESTAR and a Combination of Both Datasets

Name Models MyST test | PFS test | CMU_test
MyST (55 Hours) Finetuning:
Conformer- | Large 14.17 44,02 27.03
Transducer | XLarge 13.79 43.57 20.63
. Medium.en (Table 18.2) 11.81 17.83 15.07
Whisper
Large-V2 (Table 18.3) 12.28 10.88 15.67
w2v2-base (Table 15.10) 8.13 14.77 16.47
wav2vec2
w2v2-large (Table 15.14) 7.51 12.46 15.25
PFSTAR (10 Hours) Finetuning:
Conformer- | Large 90.00 8.58 82.00
Transducer | XLarge 86.79 6.31 75.26
. Medium.en (Table 18.7) 15.84 3.14 15.53
Whisper
Large-V2 (Table 18.8) 15.79 2.88 15.22
w2v2-base (Table 15.21) 31.86 3.48 27.49
wav2vec2
w2v2-large (Table 15.24) 27.17 3.50 21.35
MyST (55 Hours) + PFSTAR (10 Hours) Finetuning:
Conformer- | Large 13.86 4.44 25.00
Transducer | XLarge 13.61 4.30 21.21
Whisper Medium.en (Table 18.12) 12.33 3.32 15.08
P Large-V2 (Table 18.13) 13.34 4.17 17.11
WaV2VeC? w2v2-base (Table 15.27) 7.94 291 15.97
w2v2-large (Table 15.31) 7.42 2.99 14.18

Note: Whisper and wav2vec? results were previously presented in Table 15 and Table 18. They are made
available here for comparison with Conformer models.

Finetuning experiments on Conformer-transducer models used Large and Xlarge versions,
on Whisper models included Medium.en and Large-V2, while wav2vec2 involved its base
and large versions. Table 20 compares their WERs on evaluation sets. Conformer-
transducer models showed increased WERS on the PFS_test and CMU _test when finetuned
with MyST_55h, indicating poorer handling of noisy datasets compared to Whisper and
wav2vec2 models. Finetuning the Conformer-transducer on PFS_10h reduced WER on the
PFS_test but still underperformed compared to Whisper and wav2vec2. Combined dataset
finetuning improved the Conformer-transducer's performance across all datasets,
suggesting better generalization with diverse training. However, the benefits of larger
models are marginal considering their higher computational demands. Models finetuned
on MyST perform better on the MyST _test, and those on PFSTAR show improvements on
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the PFS_test. This highlights the importance of domain-specific finetuning. Whisper
provides good generalization to unseen datasets without losing any previous information
after finetuning. Overall, wav2vec2 models, being smaller and requiring less data, appear
to be the most efficient for child speech ASR, outperforming others across various datasets
and achieving the lowest WERs.

The complete working methodology along with the detailed experimental analysis is
presented and published in the Sped 23 conference titled “A comparative analysis between
Conformer-Transducer, Whisper, and wav2vec2 for improving the child speech
recognition” [19]. A copy of the published paper based on this section is attached and
presented in Appendix F of this report.

5.4 Whisper Approach to Improving ASR for Non-Native Child
Speech

This is a follow-up work on the Whisper Models [18]. The primary contribution lies in
adapting and finetuning the Whisper for non-native child speech data. We use the datasets
presented in Table 8 from different non-native English child speech including American-
accented English, British-accented English, Swedish-accented English, German-accented
English, Italian-accented English and Chinese-accented English.

Dataset Preparation: MyST _train and MyST _test are the same as mentioned in Table 8.
PFSTAR British dataset was divided into 10 hours for training, called ‘PF br train’, and
2 hours for testing, called ‘PF br test’. Similarly, the rest of the non-native PFSTAR
dataset was divided into an 8:2 ratio for testing and training. The intention here was to have
more data during inference and use a low amount of non-native datasets for finetuning
(training). Therefore, the PFSTAR Swedish subset was divided into 1.01 hours for testing
(PF_sw_test) and 0.25 hours for training (PF_sw_train). Similarly, the PFSTAR German
subset was divided into 2.55 hours for testing (PF_ge_test) and 0.68 hours for training
(PF_ge _train). The PFSTAR Italian subset was divided into 2.8 hours for testing
(PF_it_test) and 0.7 hours for training (PF_it_train). The Speechocean762 containing
Chinese-accented English was divided into 1.92 hours for testing (SO _test) and 0.48 hours
for training (SO _train). Since the amount of non-native data is small, we combined all the
non-native training datasets mentioned in the previous section into two subsets used for
finetuning: Non_Native_10 (NN_10), which contains half of the non-native training sets,
comprising half of PF_sw_train, PF_ge_train, PF_it_train, and SO _train, corresponding to
10% of the total non-native training data available and Non_Native 20 (NN_20), which
includes complete set of PF_sw_train, PF_ge_train, PF_it_train, and SO _train, amounting
to 20% of the total non-native training datasets available.

A series of experiments were conducted categorized into nine Groups (A to I) to evaluate
the performance of Whisper models on various child speech datasets. In Group-A, Original
Whisper models were tested on different child speech datasets without any finetuning. This
set of experiments served as the baseline to assess the model's inherent capabilities. The
top-performing models from Group-A were selected for further finetuning in Groups B to
I. Different combinations of child speech datasets were used for finetuning to determine
the optimal mix for lowering WERs. The focus was on adapting Whisper models to specific
child speech datasets, particularly examining the impact of non-native English datasets.
The results obtained from these experiments as well as information regarding the finetuning
groups can be found in Table 21.
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Table 21: WER Obtained for Different Group Experiments With Whisper Models
ID | Models MyST | PF_br | CMU_ | PF_sw | PF_ge | PF_it_ | SO_t | Dev_
_test _test test _test _test test est clean

Group A: No-Finetuning:

1 | Tiny 40.09 | 159.57 | 24.62 | 55.32 | 103.68 | 70.57 | 64.83 | 10.85
2 | Tiny.en 33.02 | 47.11 | 16.25 | 45.23 | 89.80 | 47.22 | 51.28 | 8.62
3 | Base 32.14 | 100.07 | 16.65 | 53.88 | 126.84 | 50.29 | 60.39 | 8.14
4 | Base.en 29.15 | 4570 | 15.01 | 37.29 | 93.77 | 46.84 | 38.47 | 7.18
5 | Small 26.22 | 111.75 | 9.30 60.81 | 86.72 | 44.09 | 36.19 | 6.43
6 | Small.en 26.72 | 39.00 8.64 3226 | 71.04 | 33.38 | 30.33 | 6.06
7 | Medium 25.11 | 80.97 7.48 35.07 | 105.82 | 45.65 | 37.00 | 5.58
8 | Medium.en 28.06 | 35.25 7.17 2791 | 80.40 | 25.94 | 25.29 | 6.20
9 | Large 25.24 | 84.52 7.56 33.09 | 79.14 | 51.82 | 37.25 | 5.53
10 | Large-V2 25.00 | 73.68 6.86 29.99 | 7756 | 34.97 | 29.39 | 5.40
Group B: MyST _train Finetuning:

11 | Medium 11.66 | 19.76 9.43 3418 | 62.40 | 2453 | 2489 | 5.62
12 | Medium.en 1181 | 17.83 9.13 23.63 | 76.84 | 19.99 | 2545 | 6.48
13 | Large-V2 12.28 | 10.88 9.80 2556 | 65.58 | 23.48 | 25.05 | 4.82
Group C: MyST _train + CMU_train Finetuning:

14 | Medium 12.14 | 41.83 446 | 158.75 | 113.07 | 125.05 | 33.24 | 6.10
15 | Medium.en 12.10 | 31.29 2.27 | 13895 | 125.37 | 77.38 | 33.32 | 6.13
16 | Large-V2 12.37 | 23.62 2.32 | 184.24 | 211.01 | 180.79 | 48.34 | 4.81
Group D: MyST train + PF_br_train Finetuning:

17 | Medium 12.22 2.98 16.05 16.52 | 51.53 | 14.08 | 22.80 | 5.40
18 | Medium.en 12.33 3.32 15.08 17.48 | 59.94 | 1395 | 2341 | 4.88
19 | Large-V2 13.34 4.17 17.11 26.55 | 58.37 | 20.24 | 24.94 | 4.97
Group E: MyST _train + CMU_train + PF_br_train Finetuning:

20 | Medium 11.72 3.11 2.36 23.94 | 86.13 | 16.72 | 27.88 | 5.62
21 | Medium.en 11.71 3.02 2.23 2165 | 68.10 | 15.87 | 26.43 | 5.57
22 | Large-V2 12.37 3.10 1.86 4334 | 7118 | 56.29 | 32.99 | 4.75
Group F: MyST _train + PF_br_train + NN_10 Finetuning:

23 | Medium 11.73 3.15 9.33 9.12 34.59 5.10 16.02 | 5.33
24 | Medium.en 11.81 3.36 9.58 10.37 | 35.27 6.22 17.04 | 4.95
25 | Large-V2 12.75 7.05 9.71 8.39 33.48 5.63 16.67 | 5.09
Group G: MyST train + PF_br_train + NN_20 Finetuning:

26 | Medium 11.96 3.12 8.92 7.74 36.21 4.16 14.40 | 5.39
27 | Medium.en 12.30 3.28 9.53 8.94 34.78 4.42 14.87 | 5.01
28 | Large-V2 11.60 3.09 9.22 7.24 31.46 3.98 13.83 | 4.47
Group H: MyST _train + CMU_train + PF_br_train + NN_10 Finetuning:

29 | Medium 12.75 3.11 1.98 8.99 36.67 514 | 16.09 | 6.09
30 | Medium.en 12.35 3.42 2.06 9.04 35.92 584 | 1755 | 5.28
31 | Large-V2 11.73 3.13 2.56 9.67 35.05 551 | 15.83 | 4.69
Group I: MyST _train + CMU_train + PF_br_train + NN_20 Finetuning:

31 | Medium 12.55 3.09 1.96 7.66 34.77 411 | 1431 | 6.06
33 | Medium.en 11.88 3.28 1.98 8.16 34.99 465 | 15.87 | 5.15
34 | Large-V2 11.62 2.84 1.75 8.36 34.26 440 | 1452 | 453
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It can be observed from Table 21 that larger whisper models generally performed better in
recognizing speech. English-only models outperformed multilingual models, suggesting
the benefits of language-specific training. Finetuning the models with MyST train
improved ASR results across various test datasets, yet this was not the case with CMU_test.
The integration of CMU _train in the finetuning process unexpectedly raised WERs on child
speech datasets, suggesting a closer acoustic similarity to adult speech. A pivot to using
the PF_br_train dataset for finetuning improved ASR performance on non-native child
speech datasets. Moreover, the inclusion of a small non-native dataset (NN_10) markedly
enhanced the ASR performance on non-native datasets, and expanding this dataset to
NN_20 led to further improvements. The addition of CMU_train had a neutral effect on
non-native datasets in later experiments, indicating that a diverse training mix could
mitigate potential negative impacts of specific datasets. A comprehensive analysis and
discussion of these results are thoroughly documented in our published paper, the full text
of which is included in Appendix E.

5.4.1 COMPARISON WITH PREVIOUS SOTA RESULTS

Table 22 showcases our results on various test sets alongside those from previous studies,
highlighting significant improvements. However, due to differences in data cleaning
methodologies used by prior researchers and the lack of a standardized process, a direct
comparison is challenging. We aim to demonstrate the effectiveness of our methodology
rather than directly benchmarking against prior work, acknowledging the variations in data
preprocessing practices. We achieved relative WER improvements of 29.7% on the
MyST test, 41.5% on the PF_br_test, 89.1% on the CMU test, and 85.1% on the
PF_sw_test. Additionally, Table 22 includes results from other studies (marked in blue)
that focused on whisper finetuning with different volumes of the MyST dataset, offering a
perspective on the impact of dataset volume on finetuning outcomes.

Table 22: Comparison Between Our Results and Previously Reported Results on Non-
Native Child Speech Datasets

. Relative WER
Test Data Approach [training data] WER improvement
MyST test | Ours [MyST_train: 55 hrs] 11.62 | 29.7% over
DRAFT-SSL [240 hrs] [148] 16.53 | non-whisper
Whisper-Medium [55 hrs] [154] 14.40 | models
Whisper-Medium [125 hrs] [154] 8.61
PF_br_test | Ours[PF_br_train: 10 hrs] 2.84 41.5%
Filter-based discriminative autoencoder [8.4 hrs] [155] | 18.77
wav2vec2-SSL [7.4 hrs] [152] 4.86
CMU test | Ours [CMU_train: 7 hrs] 1.75 89.1%
TDNN-F [54.90 hrs] [152], 16.00
HMM-DNN [6.34 hrs] [138] 19.67
TDNN-HMM [6.34 hrs] [156] 19.80
Encoder-Decoder VC [7.28 hrs] [157] 21.51
PF_sw_test | Ours [PF_sw_train: 0.24 hrs] 7.66 85.1%
HMM-DNN [4 hrs] [138] 51.58
PF_ge test | Ours[PF_ge_train: 0.68 hrs] 34.26 | NA
PF_it test | Ours [PF_it _train: 0.7 hrs] 411 NA
SO _test Ours [SO_train: 0.48 hrs] 14.31 | NA

Note: These results are provided to show comparisons on the same datasets. Dataset distributions used for
training/testing will vary in these papers. Our results use an 8:2 split for testing: training uses only a small
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percentage of data for training as compared to other papers mentioned. We did not find previously reported
results on PF_ge_test, PF_it_test, and SO_test datasets distribution.

The complete set of detailed experiments is available in our published paper titled
‘Exploring Native and Non-Native English Child Speech Recognition with Whisper’,
which is currently under review in IEEE Access. However, a copy of the submitted paper
is made available in Appendix E.

5.5 Conclusion and Final Remarks

Our comprehensive study across various ASR models—wav2vec2, Whisper, and
Conformer—on child speech recognition has yielded insightful findings, guiding future
ASR development. The wav2vec2 model demonstrated exceptional adaptability,
significantly enhancing ASR performance with as little as 10 hours of child speech data.
This improvement was even more pronounced when the model was finetuned with a mix
of datasets, underscoring the importance of cross-domain data for optimal results. The
BASE configuration of wav2vec?2, pretrained with fewer data, proved effective in low-data
scenarios. Whereas LARGE configuration, despite its extensive data requirement, offered
only marginal improvements, thus not justifying the increased computational resources.
Significant domain variations were also observed between the MyST, CMU_Kids, and
PFSTAR datasets.

In contrast, Whisper models, while benefitting from dataset similarity during finetuning,
struggled with certain child speech properties, as seen in increased WER on the CMU Kids
dataset. However, when exploring non-native English datasets, Whisper models displayed
improved generalization, particularly with diverse linguistic features, enhancing ASR
performance on non-native child speech without showing any catastrophic forgetting on
adult speech accuracy, This indicates a robustness in Whisper models, capable of adapting
to varied accents and linguistic nuances.

The Conformer-transducer models, despite their potential in low-resource settings, did not
surpass the finetuned wav2vec2 and Whisper models in child speech recognition. Larger
Conformer models faced challenges with noisier data, although diverse finetuning datasets
slightly reduced these issues. Notably, at smaller scales, Conformer models showed
promise in non-finetuned evaluations, suggesting a potential niche for their application.

Overall, our findings show that the wav2vec2 model is the most effective for child speech
ASR, particularly when finetuned with a combination of child speech datasets. This
highlights the critical importance of dataset diversity and model scalability in enhancing
ASR systems for child speech. The insights gained from this study pave the way for future
research, emphasizing the need for efficient, adaptable models that can handle the
variability and complexity of child speech for improved recognition accuracy.

The experimental framework described in this Chapter for finetuning is currently being
used by Andrei Barcovschi (mentioned in section 5.3) for carrying out further ASR
experiments for his research. The trained ASR models will also be used by Xperi to
annotate the child speech data collected under the DAVID project (will be discussed in
detail in Chapter 8).
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Chapter 6

Contribution to Data Augmentation and
Synthetic Speech Dataset Generation

In this chapter, we will talk about the Synthetic Dataset generated in this research using
Augmentation and TTS methods. The aim was to provide a controllable way to generate
more child speech datasets which can be used to further enhance the area of child speech
research [43], [130], [156].

6.1 Using Fastpitch TTS for Child Speech Synthesis

The methodology of the synthetic child speech dataset created using Fastpitch was outlined
in Chapter 4. Using this methodology, we have generated two distinct synthetic child
speech datasets and a comprehensive description of the dataset demographics is presented
in Table 23. These datasets are openly accessible via our GitHub repositoryl. We have
provided datasets in sampling rates of 24khz and 16khz for research and analysis purposes.

Table 23: Synthetic Dataset Demographics
Dataset | Speakers | Hours | Utterances data/speaker

CS_HS 40 29.02 28,800 43.53 minutes
CS_LJ 2 47.61 26,200 23.8 hours

1. CS_HS Dataset: This dataset, denoted as CS_HS was created using Harvard Sentences
as the textual reference. It comprises 40 speakers selected from the LibriTTS dataset
based on the highest data contributions in terms of hours.

2. CS _LJ Dataset: The CS_LJ dataset, aimed at generating synthetic child speech,
employed LJ Speech transcripts as the textual reference. From the LibriTTS dataset,
we identified one male and one female speaker with the most extensive training data
for this purpose.

6.2 Adult Speech to Child Speech Augmentation

This research was undertaken by a fellow postdoc in the DAVID project, Mariam Yiwere,
who proposed a novel approach to transform existing adult speech datasets into synthetic
child-like speech, addressing the limited availability of children’s speech datasets [35]. In
order to establish an augmentation pipeline, it is essential to employ specialized tools for
pitch modification and control of speech sample duration. We have opted to utilize the

! https://github.com/C3Imaging/child_tts_fastpitch
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Combinatorial Expressive Speech Engine (CLEESE) [158] for implementing these
augmentations. It is a Phase VVocoder-Based Toolbox for manipulating adult speech files
by tuning their pitch and duration, making them sound more childlike. CLEESE was
chosen due to its unique blend of user-friendliness and adaptability, permitting precise
transformations to be applied to specific segments of input speech samples as needed.

The augmentation pipeline first filters adult speakers by comparing their voice embeddings
to those of children, selecting speakers based on similarity scores. Selected speakers
undergo pitch-shifting, adjusting the pitch of entire utterances using a single breakpoint
function for each. Next, time-stretching is applied to these modified utterances, with
precise timing derived from a forced alignment system that aligns speech with text,
identifying pauses for differential stretching. This process involves creating breakpoint
functions that dictate the extent of stretching for words and pauses. This streamlined
process is depicted in Figure 21, showcasing the augmentation pipeline.

Adult speaker
selection

: . Audio
Apply pitch shift ,_[_ files
transformation

Apply time shift Wav2vec2 forced
transformation alignment
Transcript II

files

Figure 21: Flow diagram for the adult-to-child speech augmentation process.

6.2.1 AUGMENTED CHILD SPEECH DATASETS

This research resulted in creating 2 sets of synthetic child speech - Augmented_17h and
Augmented_311h, using pitch-shifted and time-stretched adult speech utterances from
Librispeech. The dataset details can be seen in Table 24.

Table 24: Dataset Demographics for Augmented Child Speech Datasets Using CLEESE

Dataset Hours Comments
Comprised augmented utterances from 16
Augmented_17h 17 female speakers in the Librispeech train-

clean-100 dataset

Contained augmented utterances of all
female speakers in the Librispeech train-
clean-360, train-clean-100, dev, and test
sets

Augmented_311h 311

The dataset created using the augmentation is not available for public distribution due to
licensing restrictions with the initial datasets used in this study. However, private access
may be granted upon request to interested parties who have successfully obtained their
licenses for the datasets utilized, by providing proof of the obtained licenses.
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6.2.2 CONTRIBUTIONS

The augmentation techniques were implemented by Mariam as a part of her research
contributions to the project. My role, on the other hand, was centred around crafting the
evaluation methodology for both subjective and objective assessments, as well as creating
and structuring the synthetic datasets which are elucidated as follows:

Subjective Evaluations of Synthetic Speech: The study included subjective evaluations
through Mean Opinion Score (MOS) tests, assessing the convincingness and intelligibility
of the synthetic child’s speech. The subjective study was based on the previously proposed
subjective MOS study in Chapter 4, however, it was modified as required for this research.
The goal of this MOS study was to determine: i) the ideal pitch-shift value for each speaker,
ii) how realistic or convincing the augmented utterances sound and iii) Evaluate if the
augmented utterances retain intelligibility or become unclear. Therefore, the MOS study
was conducted in two phases with 60 evaluators to determine these factors. We present the
results of the MOS study in Table 25 for Convincingness and Intelligibility.

Table 25: Mean and Standard Deviation (Std) of Convincingness and Intelligibility MOS
Scores (C-MOS and I-MOS) From the MOS Study

Speakers Count C-MOS (STD) I-MOS (STD)
Female 16 3.37 (0.37) 4.32 (0.20)
Male 4 1.76 (0.37) 3.87 (0.39)
All 20 3.05 (0.75) 4.23 (0.30)

Empirical Testing for Optimal Pitch-Shift Factors: The study conducted empirical tests
to determine the most effective pitch-shift factors for male and female speakers, providing
insights into gender-specific differences in speech augmentation.

Speaker Embedding Visualization: Uniform Manifold Approximation and Projection for
Dimensionality Reduction (UMAP) [159] was used to plot speaker embeddings of both
adults and children, aiming to identify adult speakers closest to the children's embeddings.
In Figure 22, these embeddings are visually represented, with male speakers marked by
black crosses, female speakers by blue triangles, and child speakers by red circles. Notably,
child speakers’ embeddings clustered in a distinct area of the space. However, visually
determining the closest adult speakers to children proved difficult, leading to the adoption
of a cosine similarity-based approach for more precise identification in the augmentation
experiments.

Figure 22: T-SNE Projection of 65 adult speaker ehbeddings from Librispeech: 31 male (black), 34
females (blue) and 31 child speaker embeddings from CMU_Kids.
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Objective Evaluation for Speaker Similarity: Cosine similarity effectively measured the
closeness of adult speaker embeddings to the average child speaker embedding.
Consequently, for a comprehensive assessment of the augmented speech, we recalculated
these cosine similarities by comparing speaker embeddings pre-augmentation and post-
augmentation. Figure 23 illustrates the cosine similarities for different male and female
speakers before and after the augmentation. This recalculation revealed a general increase
in similarity values for all speakers. It's noteworthy that the cosine similarities between
individual child speakers’ embeddings and the mean child embedding ranged from 0.9 to
0.973, with one exception at 0.837.

Cosine Similarities Before and After Augmentations
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Figure 23: Cosine similarities between adult and child speaker embeddings before and after pitch
shifting and time stretching augmentations.

Objective Validation of Synthetic Speech Through wav2vec2 ASR: The wav2vec2
ASR framework from Chapter 5 was used to provide the validation of the synthetic child
speech dataset. The augmented speech datasets, Augmented_17h and Augmented_311h
were used to finetune the wav2vec2 ASR model. The complete list of experiments can be
seen in Table 26. The Librispeech dataset with BASE configuration was used for all the
pretraining. Finetuning involved various datasets: Original_12h and Original_220h are the
non-augmented versions of Augmented_17h and Augmented_311h, while MyST_55h was
introduced in previous chapters 3 and 4. The results showed modest improvements in ASR
performance when using augmented speech compared to only using adult speech,
validating the effectiveness of the augmented child speech data.

Table 26: WER of wav2vec2 Models Finetuned with Original and Synthetic Speech

Model | Group Finetuning dataset WER WER WER WER
ID g MyST test | PFS_test | CMU_KIDS | dev_clean
1 Original_12h 19.95 25.10 18.95 5.78
2 A Augmented_17h 20.11 20.48 19.14 6.58

Original_12h +
3 Augmented_17h 18.17 18.11 16.07 5.49
4 MyST_55h 8.13 17.67 16.47 7.72
MyST_55h+
5 B Original_12h 8.10 16.76 15.45 5.62
MyST_55h+
6 Augmented_17h 7.98 14.02 15.02 4.87
8 C Original_220h 15.09 16.59 14.41 4.39
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9 | | Augmented 311h | 1742 | 1586 | 1509 | 483

The complete working methodology along with the detailed experimental results is
presented and published in IEEE Access titled “Augmentation Techniques for Adult-
Speech to Generate Child-Like Speech Data Samples at Scale”. A copy of this published
paper is attached and presented in Appendix G of this report.

6.3 Conclusion and Final Remarks

These methodologies highlight different approaches to synthesizing child speech: one by
transforming adult speech and the other by synthesizing child speech data from TTS
models. The augmented synthetic datasets (Augmented_17h and Augmented_311h) were
used to finetune ASR models. These models showed notable improvements in recognizing
real child speech compared to models trained only on adult speech. The synthetic datasets
created using Fastpitch were subjected to objective assessments for naturalness,
intelligibility, and speaker similarity, which demonstrated a significant correlation between
real and synthetic child voices. The synthetic child speech datasets serve as a valuable
resource for further research in child speech synthesis and can potentially be used to train
and improve TTS and ASR systems, especially in scenarios where real child speech data
is scarce. These datasets have been made publicly available for research purposes. By
making these datasets accessible, we aim to facilitate and encourage further exploration
and development within this area of research. The availability of these datasets is expected
to contribute significantly to the collective knowledge and progress in this domain,
fostering collaboration and shared learning among researchers worldwide.
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Chapter 7

Additional Contributions

7.1 Contribution to Speech Technology and Human-Computer
Dialogue Conference (SpeD 23) Special Session

The special session "Research Advances in Child Speech Technologies," was organized by
my supervisor Peter Corcoran and myself at the University Politehnics of Bucharest,
Romania from October 25™, 2023, to 27™" October 2023 for the SpeD 23 [160] conference.
It focused on several key areas in the domain of child speech technology. The primary
objectives of the session included exploring applications of speech synthesis and data
augmentation to enhance ASR and TTS technologies for children, addressing the
limitations of traditional supervised learning in low-resource child speech languages, and
investigating the potential of self-supervised and unsupervised learning methods. Another
significant topic was the use of transfer learning and finetuning methodologies in TTS to
create synthetic child speech datasets. Additionally, the session delved into the challenges
and advancements in audio-visual facial animation for children. The overview highlighted
the rapid progress in deep learning for speech technology, but also the stagnation in child
speech due to data scarcity and the unique differences between adult and child speech
characteristics. The session aimed to unite researchers to discuss these critical technologies,
their current limitations, and potential solutions for advancing speech technologies in the
context of child speech. The topics of interest covered a broad range, including speech
augmentation, recognition of child speech as a low-resource area, synthetic speech tools,
methodologies for child speech technology enhancement, and audio-visual facial
animation for children.

| had the privilege of overseeing a series of engaging and insightful presentations, each
contributing significantly to the field of audio technology, particularly in the context of
child-focused applications. My responsibilities involved planning and coordination to
ensure the session’s success, conceptualizing the session's theme to facilitating discussions
and reviewing the papers for the conference. Overall, overseeing the special session and
preparing the associated paper was a rewarding experience that complemented my research
work and contributed to my professional development in the academic field. The session's
success was a testament to the collaborative efforts of the speakers and the relevance of
their research in today's rapidly evolving technological landscape.

7.2 Contribution to the DAVID Smart-Toy Platform Project

As an integral part of the DAVID project, my role was dedicated to facilitating the
integration of TTS and ASR technologies onto the Ergo platform in collaboration with
Xperi's engineering teams. This endeavour involved close cooperation with cross-
functional experts, including engineers, linguists, and product managers, both at Xperi
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Ireland and Xperi USA. Figure 24 represents a high-level system hardware architecture for
the DAVID project, also showcasing the use of the ERGO chip.
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Figure 24: System hardware architecture for DAVID.

My responsibilities encompassed several critical aspects of this research. | diligently
documented research findings, methodologies, and experimental results. This
documentation served as a valuable resource for tracking progress, sharing insights, and
ensuring the transparency of our research efforts. | also undertook the design and
development of algorithms tailored specifically for speech recognition and speech
synthesis on edge devices. These algorithms were engineered to meet the unique
constraints and requirements of the Ergo platform, optimizing performance and efficiency.
Finally, collaborative engagement with Xperi's engineering teams was a fundamental
aspect of my role. Together, we worked on finetuning and optimizing Al models to ensure
their seamless deployment in a production environment. This optimization process was
crucial for achieving the desired real-world performance and reliability of the TTSand STT
technologies. In summary, my involvement in the DAVID project entailed a multifaceted
collaboration, from algorithmic development and optimization to cross-functional
teamwork, ultimately contributing to the successful integration of cutting-edge speech
technologies into the Ergo platform for the development of the DAVID smart toy. My
efforts were also focused on the preparation and editing of a paper, ensuring the paper not
only aligned with the conference's standards but also effectively conveyed the novel
insights and findings relevant to the session's focus.

The DAVID platform represents a significant step forward in the practical application of
Edge-Al in consumer products, particularly in the domain of smart toys. By integrating
advanced neural models directly with sensory data sources and emphasizing data privacy
and security, the platform sets a new standard for smart-toy development. Its flexible
architecture allows for diverse applications, ranging from interactive storytelling to
complex user interaction scenarios, all while adhering to strict data privacy standards. The
innovative use of low-power, high-efficiency Al models demonstrates the potential for
broader applications of Edge-Al in consumer electronics.
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Figure 25: DAVID smart toy demo for proof-of-work depiction.

Figure 25 presents a proof-of-work demo of the DAVID smart toy by moving its eyes and
providing interaction. The published paper in Sped23 titled "Data Center Audio/Video
Intelligence on Device (DAVID) - An Edge-Al Platform for Smart-Toys," where | am a
co-author provides an in-depth exploration of a pioneering Edge-Al platform specifically
designed for smart toys. The published paper is made available in Appendix H.

7.3 Contribution to Pose-Aware Speech Driven Facial
Landmark Animation Pipeline for Automated Dubbing

This work was undertaken by a fellow PhD student, Dan Bigioi. It presents a detailed study
on creating a novel pipeline for animating facial landmarks in response to speech, which is
particularly relevant for the task of automated dubbing [37]. The primary objective was to
create a novel neural pipeline that could generate 3D animated facial landmarks
synchronized to a target speech signal. This is particularly aimed at automating the dubbing
process. A key goal was to ensure that the generated landmarks were aware of the head
pose and identity characteristics from a given video, maintaining the quality of the original
performance. The research aimed at devising efficient data processing methods for
landmark extraction and audio feature preparation. Figure 26 shows a high-level overview
of the speech-driven facial animation pipeline for automated dubbing.
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Figure 26: High-level architecture of pose-aware speech driven facial landmark animation pipeline
[37].

I worked on developing and processing the speech-driven features. This entailed extracting
Mel Coefficients from speech sequences, which are fundamental in driving the animation
of facial landmarks. This process involves audio processing techniques and a deep
understanding of how speech features correlate with facial movements, especially in the
context of automated dubbing. | was also involved in preparing and conducting the MOS
study. This includes designing the study's framework, selecting appropriate video samples,
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and determining the evaluation criteria. A well-structured MOS study is essential for
objectively assessing the quality of the generated landmarks and the overall effectiveness
of the model. Finally, I helped in setting up and managing multi-GPU training
environments significantly accelerating the training process, allowing for more efficient
experimentation and iteration. Since multi-GPU training often involves challenges such as
ensuring efficient data parallelism and balancing loads across GPUs, I also contributed to
troubleshooting these issues and optimizing the training process. In summary, my
contributions as a supporting researcher included the development of speech-audio
features, preparation and advising on design elements of the MOS study, setting up
experiments in multi-GPU server and troubleshooting and optimizations of these
experiments. This study’s contribution lies in its novel approach to integrating speech and
audio features with facial landmark generation, enhancing the realism and accuracy of
automated dubbing and facial animation. It shows a method for creating 3D pose and
identity-aware talking head landmarks from a source video and driving speech signal. The
use of LSTM-based networks and Mel Coefficients, along with effective training
methodologies, stands out as a significant advancement in the field. The introduction of a
novel LSTM-based model and Procrustes Lip Augmentation technique for data processing
significantly contributes to the field, providing a solid foundation for future research.

The "Pose-Aware Speech Driven Facial Landmark Animation Pipeline for Automated
Dubbing,” provides a critical contributions to the development of advanced synthetic
speech-driven facial animation technologies. Furthermore, it addresses GDPR privacy and
ethical considerations by facilitating the generation of synthetic training data, thus reducing
the dependency on extensive real data collection from children. The MOS study used in
this pipeline is a more comprehensive version of the one mentioned in section 4.1.3,
modified to align with the requirements of the facial animation subjective evaluation. This
synthetic data generation capability is vital for developing and testing machine learning
models in child speech research. Additionally, the integration of this facial animation
technology with synthetic voice generation techniques significantly enhances human-
computer interaction by enabling more natural and engaging interactions with digital
avatars. This advancement is crucial for applications such as educational tools, smart toys
and therapeutic platforms designed for children. The application of these technologies to
create realistic and believable synthetic speaking children avatars will be discussed in more
detail in section 7.4.

The published paper in IEEE Access titled " Pose-Aware Speech Driven Facial Landmark
Animation Pipeline for Automated Dubbing" provides more insights into this pipeline. The
published paper is also made available in Appendix I of this thesis.

7.4 Contribution to Synthetic Speaking Children — Why We
Need Them and How to Make Them

This study represents the final contribution to the DAVID project. It seamlessly integrates
three distinct research works: ‘ChildGAN: Large Scale Synthetic Child Facial Data
Using Domain Adaptation in StyleGAN' [161] by Mohammad Ali Farooq and Wang
Yao, 'Pose-Aware Speech Driven Facial Landmark Animation Pipeline for
Automated Dubbing’ [37] by Dan Bigioi, as discussed in Section 7.2, and the Text-to-
Speech (TTS) research [29], [30] conducted in Chapter 4. This study represents a key
contribution to our supervisor's experiment, merging three distinct PhD projects to address
the restrictions on public dissemination of real children's facial data due to Data Protection
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Obligations (DPO). Collectively, this research represents state-of-the-art work in the
creation of synthetic-speaking children, with a specific focus on applications within the
audio-visual multimodality domain. This achievement gains particular significance when
viewed in the context of an Edge-Al smart-toy platform by enabling the development of
synthetic datasets.

The methodology outlined in the research represents a comprehensive approach to creating
synthetic-speaking children, combining techniques in face generation, speech synthesis,
and facial animation. Figure 27 represents the pipeline designed for generating 3D
synthetic-speaking children. Each step contributes uniquely to the final goal, showcasing
innovative uses of Al and generative models in synthesizing realistic children's faces and
voices. The initial step involved transforming synthetic adult faces generated by StyleGAN
[162] into child-like faces. This process involves morphological alterations and age
regression techniques, for creating a base dataset (Seed Data) representative of children.
Following the initial transformation, the StyleGAN generator was finetuned specifically to
generate synthetic child faces (see Figure 28). This finetuning involved retraining the
network with the 'childified' seed data to better capture the unique attributes of children's
faces. The research then focused on synthesizing child speech using text-to-speech (TTS)
models like FastPitch and Tacotron2. Techniques like Cleese-based pitch augmentation
were employed to modify adult speech data to resemble that of children, achieving realism
in voice timbre and prosody. Finally, the generated child faces and synthesized speech were
brought together using a Pose-Aware facial animation pipeline. This step involved
animating the synthetic faces to match the TTS-generated speech, ensuring lip
synchronization and expressive facial movements. This demonstrates a sophisticated
understanding of both audio-visual synchronization and facial animation technology,
culminating in the creation of lifelike synthetic speaking children.
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Figure 27: Block diagram representing the pipeline adapted for generating 3D synthetic child-
speaking clips.

The research methodology employed in this study is characterized by the integration of
three distinct studies, which inherently presents replication challenges. To ensure accurate
and feasible replication, detailed guidelines and all necessary materials are available on the
paper's GitHub repository, thereby facilitating a smoother replication process for
researchers and practitioners interested in exploring or building upon this work. The
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evaluation of the synthetic data's quality included a subjective assessment by six members
of our research group. They were asked to rate the visual and audio quality of the synthetic
child video, and whether the overall video appeared natural and sharp. Five participants
positively responded to the video's visual quality and its overall naturalness, while four
agreed on the good audio quality. This resulted in an average positive response rate of 75%
from the human evaluators.

passed through this pipeline to generate synthetic-speaking children [161].

In this research, my primary contributions revolved around the development of TTS
synthesis for child speech. Specifically, | worked towards integrating cutting-edge
technologies like Fastpitch and Tacotron 2 TTS, leveraging advanced voice augmentation
techniques to create genuine children's voices that capture their unique characteristics.
Additionally, I was also involved with combining the generative TTS models with the 3D
landmark-based talking heads pipeline. Furthermore, | helped with the paper-writing
process for this research. This was a really enjoyable piece of research. | am pleased that |
had the opportunity to integrate my research contributions with those of others, resulting
in the creation of innovative knowledge within our field of study. This research can
revolutionize the way synthetic data is used in various domains, offering more realistic,
diverse, and ethically sourced data for a wide range of applications. The complete work is
presented in the published paper ‘Synthetic Speaking Children — Why We Need Them and
How to Make Them’, a copy of which is made available in Appendix J.

A notable aspect of this study is the remarkably realistic appearance of the synthetic
children it produces. This realism, resulting from the integration of diverse research
methods, not only broadens the study's applicability but also highlights advancements in
synthetic human representation technologies. This successful creation of lifelike synthetic
children paves the way for ethical research in areas where using real child data is limited.
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Chapter 8

Conclusion and Future Work

In this thesis, we collectively make significant contributions to the advancement of Al-
based ASR and TTS systems for child speech understanding. We comprehensively cover
the evolution of speech technology, emphasizing the synergy between TTS and ASR in
tackling the unique challenges of child speech. Furthermore, they underscore the critical
need for ethically sound child speech datasets and showcase substantial progress in
developing TTS and ASR technologies tailored for children. The exploration of synthetic
datasets also demonstrates their potential utility in situations with limited real-world child
speech data. we address the problem of the low-resource nature of child speech and provide
solutions to encounter and improve this area of research.

8.1 Summary of the Contributions Presented in This Thesis

Reflecting on my involvement in this comprehensive research, | can affirmatively say that
it has been an immensely positive and enriching experience. The work presented in each
chapter has not only contributed significantly to the field of speech technology but has also
provided me with invaluable skills and insights. In this section, a concise summary of the
main contributions of this thesis is presented for each of the chapters:

Chapter 2 outlines the progression, mechanisms and selection of speech technology,
emphasizing TTS and ASR. The chapter highlights the synergistic relationship between
TTS and ASR, particularly in addressing the unique challenges of child speech. It then
traces TTS from early synthesis methods to advanced neural models like Tacotron and
Fastpitch, detailing their structures and functionalities. In ASR, the chapter reviews
historical milestones, from Bell Laboratories' early systems to contemporary deep learning
models like wav2vec2, Whisper, and Conformer. It also delves into the selection and
evaluation of ASR and TTS models used in this work.

Chapter 3 of the study addresses the creation of child speech datasets, vital for enhancing
TTS and ASR for children. It discusses the scarcity of such datasets and their impact on
TTS and ASR research, emphasizing the challenges in accurately representing and
transcribing children's unique speech characteristics. Furthermore, it describes the
processes of cleaning and preprocessing these datasets to overcome limitations in data
availability and variability. This chapter provides a comprehensive data-cleaning
methodology, designed to establish a benchmark standard for processing and working with
child speech data. This standardized approach to data cleaning is expected to facilitate
better quality research and comparability across different studies focusing on child speech.

Chapter 4 details advancements in TTS technology for child speech within the DAVID
project, utilizing Tacotron2 and Fastpitch models in a transfer learning framework. The
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chapter outlines the development and optimization of these models using cleaned child
speech datasets, focusing on generating realistic synthetic child speech. Evaluations, both
subjective and objective, indicate that these models effectively produce child-like speech,
though some limitations in naturalness and intelligibility persist. This research marks
significant progress in creating diverse and natural child voices for TTS applications,
highlighting the ongoing need for more varied child speech datasets for further
improvements.

Chapter 5 focuses on enhancing ASR for child speech. The study addresses the challenges
of ASR with child speech. Through extensive experiments, the chapter demonstrates that
wav2vec2, when fine-tuned with even a small amount of child speech data, significantly
improves ASR performance. The chapter also explores the adaptation of Whisper models
for child speech and compares their effectiveness with wav2vec2 and Conformer
Transducer models, providing insights into the development of more efficient ASR systems
tailored for child speech recognition.

Chapter 6 addresses the creation of synthetic child speech datasets using Fastpitch TTS and
adult-to-child speech augmentation techniques. Two datasets, CS_HS and CS_LJ, were
generated using Fastpitch TTS, while Augmented 17h and Augmented 311h were
produced by transforming adult speech into child-like speech using CLEESE. These
datasets underwent objective and subjective evaluations and were used to finetune ASR
models, showing performance improvements. This chapter highlights the potential of
synthetic datasets in child speech research, particularly in scenarios with limited real child
speech data.

In Chapter 7, the focus is on additional contributions to the DAVID project and related
research. Key involvements include collaborating with Xperi on integrating TTS and STT
technologies for the DAVID smart toy, contributing to a facial landmark animation pipeline
for automated dubbing, and participating in a study on synthetic-speaking children. These
contributions encompass algorithm development, documentation, optimization with
engineering teams, and the development of advanced speech audio features for facial
animation. The work on synthetic-speaking children involved integrating text-to-speech
synthesis with 3D facial animations, demonstrating the potential of Al in creating realistic
synthetic data for diverse applications. The outcomes of these efforts are detailed in
published papers and highlight significant advancements in speech synthesis, facial
animation, and smart toy technology.

Overall, this research journey has been instrumental in shaping my skills as a researcher,
particularly in the domain of speech technology. It has prepared me for future challenges
in the field, contributing to my growth in technical expertise, ethical research practice, and
applied research skills. In terms of the impact on the field of speech technology, this work
paves the way for future innovations, especially in creating more nuanced, effective, and
ethically sound speech technologies for children. The knowledge and methodologies
developed in this research have the potential to influence a wide range of applications, from
educational tools to interactive media, enriching the landscape of speech technology
research and development for children.
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8.2 Discussion and Future Work

This field of child speech research is considered a relatively unexplored domain with
significant potential for advancement. Below, we delve into several considerations and
limitations of the current work, as well as prospective areas for future exploration.
Additionally, we discuss intriguing long-term research possibilities in this field, and
highlight various research paths for follow-up studies.

8.2.1 LIMITATIONS

Although this thesis has achieved notable progress in speech technologies tailored to
children aged 5 to 12, it's essential to acknowledge the diverse developmental paths
observed among individuals at both the younger and older extremes of the 4 to 15 year old
range. Infants and toddlers, for instance, may exhibit more disfluencies, limited vocabulary,
and immature articulation patterns, requiring specialized data collection methods and
model architectures to effectively capture their speech characteristics. On the other hand,
older adolescents may have speech patterns that are closer to adult-like, necessitating the
exploration of transfer learning techniques or the incorporation of age-specific linguistic
features to ensure optimal performance.

Furthermore, the environmental and cultural factors that shape child speech can vary
widely, not only across geographical regions but also within different socioeconomic,
educational, and linguistic contexts. The conclusions drawn in this thesis may be most
applicable to the specific settings in which the research was conducted, which may not
fully represent the diversity of child speech experiences globally. Expanding the scope of
data collection and model evaluation to include a broader range of cultural and
environmental influences could yield valuable insights into the generalizability of the
developed technologies.

Additionally, longitudinal studies tracking the speech development of individual children
over time could provide deeper understanding of the dynamic nature of child speech and
inform the design of adaptive speech technologies that can evolve alongside the child's
linguistic and cognitive growth. By acknowledging the limitations of the current work and
proactively addressing the diverse needs and characteristics of children across the age
spectrum and various environmental contexts, future research in this field can build upon
the foundations laid by this thesis to develop truly inclusive and responsive speech
technologies for the benefit of all young users.

8.2.2 FUTURE WORK

Steps Towards Improving Child Speech TTS: To enhance multi-speaker TTS models,
there is a plan to integrate further refinement of vocoders, possibly through the utilization
of state-of-the-art GAN-based vocoders like HiFi-GAN [93]. This will require access to a
larger dataset of child speech to achieve significant improvements. Incorporating multi-
accented non-native datasets into the TTS pipeline also presents a compelling avenue for
generating English child speech with various accents. This strategy acknowledges the
diversity inherent in language expression among children from different geographical and
cultural backgrounds. By training TTS models on a variety of accents, the resultant speech
synthesis could reflect the nuances and subtleties of regional pronunciations. To achieve
this, a two-stage finetuning process can be adopted. Initially, a TTS model would undergo
finetuning with a multispeaker child TTS dataset, which would lay the groundwork for
broad accent coverage. The second stage of finetuning would focus the model on a single,
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specific accent. This hierarchical approach allows the model to first acquire a wide range
of phonetic and prosodic patterns before honing in on the unique characteristics of a
particular accent. Preliminary tests of this method have yielded promising results,
indicating the viability of this approach.

Subjective Evaluation: Having gained considerable experience in conducting Mean
Opinion Score (MOS) studies, a subjective evaluation of the generated child speech
datasets from Chapter 6 will be conducted to assess naturalness, intelligibility, and speaker
similarity more comprehensively. The challenges posed by Mean Opinion Score (MOS)
studies, especially regarding child speech, stem from the absence of a standardized
benchmark. Moreover, subjective evaluations inherent to MOS studies are inherently
resource-intensive, demanding significant time and effort from both researchers and
participants. Our efforts to streamline MOS methodologies for child speech can provide
researchers with an easier way to conduct subjective studies as it eliminates the need for
extensive time and resource investments. This methodology, which we aim to establish as
the benchmark for future evaluations, will be instrumental in ensuring consistency and
reliability in how child speech synthesis is appraised.

Steps Towards Gathering More Child Speech Data: Enhancing this research
fundamentally hinges on the expansion and diversification of child speech datasets. In the
duration of the DAVID project, Xperi accumulated a substantial quantity of unannotated
child speech data across various recording environments, a topic not addressed in this thesis
owing to concerns related to confidentiality and ethics. The ASR models tailored for child
speech recognition represent a pivotal tool for transcribing the substantial volume of
unlabelled child speech data collected by Xperi (see section 3.4.1). The application of these
models to Xperi's extensive, unannotated child speech datasets will streamline the process
of transforming raw audio into structured, textual data. We also intend to utilize the data
gathered in section 3.4 by Xperi and Bits Pilani using the data collection application for
conducting additional experiments involving child speech. This will help models
generalize better to Irish and Indian-accented English child speakers. It would also help
improve the ASR transcription and provide a better generalization to unannotated child
speech datasets gathered by Xperi.

Steps Towards Improving Child Speech ASR: There are plans to conduct further
finetuning experiments, particularly focusing on smaller Conformer-transducer models that
are adapted specifically for child speech data. Such finetuning will aim to leverage the
unique characteristics of child speech to enhance model performance. Moreover, the
research will delve into the optimization of hyperparameters, which is a critical step toward
refining the ASR models' ability to learn and generalize from the data. Experimenting with
different decoding strategies will also form a key part of this.

8.2.3 LONG-TERM RESEARCH PROSPECTS

Experiments with Synthetic Speech: It would also be interesting to use the synthetically
generated child speech as a data augmentation technique for ASR and speaker recognition
models. This approach entails to creation of realistic, synthetic child speech data, which
could vastly expand the available training resources without the ethical and practical
constraints of recording real child speech [44], [130]. This can further contribute to
enhancing the performance of child speech technologies. Since these datasets are available
publicly, we also encourage researchers to use these synthetic datasets.

Experiments to Improve Child Speech Recognition: An additional concept under



CHAPTER 8 81

consideration was to adapt the 'Pretraining’ phase of the wav2vec2 model by utilizing a
‘cleaned’ dataset of child speech. This approach arises from the observation that
incorporating the MyST dataset into the pretraining increased the Word Error Rate (WER).
It would be intriguing to examine the effects of integrating a refined set of child speech
data, one that has undergone meticulous cleaning processes to enhance its quality. Such a
dataset could potentially eliminate confounding noise and variability, providing the
wav2vec2 model with clearer, more consistent speech patterns during pretraining. This
could lead to improved model performance, as the cleaner data may help the model learn
more accurate representations of child speech. It would also be interesting to improve the
baseline ASR models by incorporating additional training datasets from different low-
resource languages as it could significantly bolster its performance, especially in
recognizing non-native child speech. This expansion entails integrating diverse linguistic
data, which may introduce a broader spectrum of phonetic and acoustic patterns, thereby
improving the model's ability to generalize across various speech characteristics.

Deployment on Edge Devices: The exploration of deploying ASR models on edge devices
represents a vital direction for future research. This deployment strategy involves adapting
the models to function within the constraints of lower-power devices, which requires
efficient model architectures that maintain performance while operating with limited
computational resources. Optimizing ASR models for edge deployment could significantly
reduce latency, enhance privacy by processing data locally, and ensure functionality even
without constant internet connectivity.
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ABSTRACT Speech synthesis has come a long way as current text-to-speech (TTS) models can now generate
natural human-sounding speech. However, most of the TTS research focuses on using adult speech data
and there has been very limited work done on child speech synthesis. This study developed and validated a
training pipeline for fine-tuning state-of-the-art (SOTA) neural TTS models using child speech datasets. This
approach adopts a multi-speaker TTS retuning workflow to provide a transfer-learning pipeline. A publicly
available child speech dataset was cleaned to provide a smaller subset of approximately 19 hours, which
formed the basis of our fine-tuning experiments. Both subjective and objective evaluations were performed
using a pretrained MOSNet for objective evaluation and a novel subjective framework for mean opinion
score (MOS) evaluations. Subjective evaluations achieved the MOS of 3.95 for speech intelligibility, 3.89 for
voice naturalness, and 3.96 for voice consistency. Objective evaluation using a pretrained MOSNet showed a
strong correlation between real and synthetic child voices. Speaker similarity was also verified by calculating
the cosine similarity between the embeddings of utterances. An automatic speech recognition (ASR) model
is also used to provide a word error rate (WER) comparison between the real and synthetic child voices. The
final trained TTS model was able to synthesize child-like speech from reference audio samples as short as
5 seconds.

INDEX TERMS Text-to-speech, child speech synthesis, tacotron, multi-speaker TTS, alternative WaveRNN,

MOSNet, subjective MOS.

I. INTRODUCTION

The bulk of recent research into human speech has focused on
neural network techniques to improve speech understanding
and recognition or to provide simplified, high-quality text-
to-speech (TTS) models that can directly convert written
text into natural speech. The most highly developed domain
for such research has a focus on spoken English and is
based on native-speaker adult voice data samples. Automated
speech recognition (ASR) is a core element of modern con-
sumer technology user interfaces employed in smart-speaker
and voice command interfaces. For interactive chatbot and
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voice services, TTS models are also important, and the most
advanced models can incorporate emotional and prosodic
elements into the generated speech output.

More recent research into low-resource languages and
other low-resource aspects of human speech, such as accented
and prosody-aligned speech has started to see improvements
for both ASR and TTS [1]. Another aspect of human speech
of growing importance is that of child speech. Child speech
differs significantly from those of adult speech, falling into a
narrow range of variation and with higher pitch levels. Fur-
thermore, children’s speech patterns are more inarticulate and
can vary widely in terms of volume, pacing, and emotional
expressivity. These challenges are further amplified by the
relatively small number of public child speech corpora that
are available with useful annotations.
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Current work done on TTS for child’s voices is limited.
This is mainly due to the lack of child voice datasets and dif-
ficulty in creating such datasets. As TTS models require hun-
dreds of hours of annotated data for training [2], performing
TTS for child voices can be quite challenging. The focus of
this work is to explore the potential of state-of-the-art (SOTA)
TTS to build a pipeline for the synthesis of children’s voices
with low data requirements. More specifically, if we can build
such a pipeline and demonstrate that it can reliably synthesize
a useful number of distinct children’s voices, this pipeline
would enable the creation of large synthetic datasets that
could further improve other aspects of child speech research
such as automatic speech recognition (ASR), speaker recog-
nition, etc. To better elaborate on this hypothesis, it is useful
to review current SOTA in TTS technologies, followed by a
similar consideration for review in child speech research.

A. RELATED RESEARCH IN TTS

Early research work on TTS synthesis can be traced
back to four/five decades ago when the task of TTS
was commonly tackled using concatenative and parametric
approaches [3]-[7]. Although these early methods were suc-
cessful in generating speech from text, they generally lacked
naturalness. The audio generated using these approaches was
kind of muffled and sounded very robotic.

Recent state-of-the-art TTS models are largely based on
deep neural networks (DNN) and can achieve more natural-
sounding/human-like synthesized speech. With the introduc-
tion of Tacotron [8], a neural sequence to sequence the TTS
model, the quality of speech synthesis improved significantly.
While there are newer approaches that are more efficient or
use smaller models, etc., it is still representative of SOTA
for the quality of the synthesized speech and is used as a
benchmark for comparison with newer methods. Nonethe-
less, Tacotron TTS is not very robust as it sometimes skips
certain words and it also suffers from low inference speed
[9]. Several methods have since been proposed to improve
upon it such as Tacotron2 [10], FastSpeech [11], FastSpeech2
[12], Transformer TTS [13], FlowTTS [14], GlowTTS [15],
etc. Similarly, there have been several improvements over
the quality of synthesized waveforms by the introduction
of SOTA Vocoders such as WaveNet [16], WaveGlow [17],
MelGAN [18], Hifi-Gan [19], WaveRNN [20], etc. These
TTS models supported single speaker synthesis, but Deep-
voice2 [21], introduced the use of speaker verification mod-
els [22]-[25] to achieve Multi-speaker TTS [26]-[34].

B. CHILD SPEECH - LITERATURE AND CHALLENGES

While all SOTA TTS systems rely on large datasets to train,
the datasets mostly comprise speech taken from adult native
English speakers; hence, for low-resource languages and
other target groups such as non-native adult speakers and
child speakers, there remain challenges developing effective
and suitable TTS models. Specifically, in comparison with
adult TTS, child TTS has gained very little to no atten-
tion from the TTS research community. With the current
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trend of data-hungry DNN-based TTS, TTS for children has
practically been neglected due to the lack of large publicly
available children’s speech datasets suitable for training such
networks. Prior to this DNN era, researchers worked on TTS
for children using HMM-based models [3], [6].

Collecting data for child speech research can be a chal-
lenging task. Most TTS datasets are created in studios with
expensive equipment: an adult will be using a microphone to
create a clean, noiseless, easy to understand, and meaningful
audio. This task is not easy to produce and even more difficult
to implement with a child.

One of the main differences between adult speech and child
speech is the fundamental frequency. The pitch for children is
significantly higher than that of an adult [35]-[38]. The pitch
for an adult voice lies between 70 to 250 Hz whereas the pitch
for the children’s speech is between 200 to 500 Hz [39]. There
is also a difference in the speaking rate of children. It was
noticed that average phoneme duration is longer in children,
therefore, leading to longer speaking rates as compared to
adult speech [38], [40]-[42]. The vocal tract of an adult is
larger as compared to children’s vocal tract and therefore
produces different prosody features as compared to an adult
voice [43], [44]. Hence, a substantial difference in children’s
voice characteristics and features can be seen as compared to
an adult voice.

Our work aims to solve the problem of TTS for children
using DNNSs. To solve this problem, the huge challenge of
limited publicly available children’s speech datasets must
first be overcome. To this end, this study considered the use
of an existing multi-speaker children’s speech dataset [45],
which comes with an incomplete set of utterance transcrip-
tions. In addition, this dataset has a lot of unusable data,
such as empty/blank entries, extremely long entries as well as
inaccurate transcriptions. Firstly, the dataset is cleaned up to
create a subset that is suitable for training a neural TTS model.
Secondly, with the cleaned-up dataset, a multi-speaker TTS
model is trained to generate synthetic speech for multiple
child speakers as a proof of concept for children’s TTS. The
training involved fine-tuning an existing adult multi-speaker
TTS model [33] by way of transfer learning, with a few
modifications as explained in later sections. This approach
involves the training of a separate speaker verification model,
and it was preferred because it reduces the problem at hand
in two ways:

1) To train the speaker verification network, transcrip-
tions for the speech dataset are not required. Only the
speaker identities for the utterances are needed and it
can also be trained on noisy speech without any nega-
tive effects. This means that even the noisy children’s
speech dataset, which has incomplete transcriptions,
can be useful in training the verification model.

2) Being a transfer learning process, the pretrained TTS
model can be finetuned sufficiently using the resulting
cleaned set of children’s speech data.

Subjective and Objective Evaluation performed on the syn-
thesized child voices confirms that the child voices generated
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TABLE 1. Dataset used in this work.

Dataset # of speakers # of hours # of utterances

MyST 1371 393 228,874
VoxCelebl 1251 352 153,516
LibriSpeech 2484 1000 -

VCTK 110 44 400 each

TABLE 2. MyST dataset comparison [complete vs with transcript].

synthetically are very close to the real child voice in terms of
different acoustic features and MOS.

The rest of this paper is organized as follows. Section II
describes the methodology and datasets used in this study.
The experiments are presented in Section III, the result and
evaluation in Section IV, and finally, the conclusion and
future work in Section V.

Il. PROPOSED METHODOLOGY

A. DATASETS USED IN THIS STUDY

The nature of this study, considering the challenge of limited
children’s speech datasets and the multi-step training process
involved, calls for the use of multiple large datasets, including
adult speech datasets. All these datasets are described in
Table 1.

o MyST [45]: My Science Tutor (MyST) children’s cor-
pus consists of child speech collected using the inter-
action of the student with a virtual science tutor. The
data consists of 393 hours of child speech collected from
1371 students producing a total of 228,874 utterances.
45% of the data is transcribed at word-level leading to
about 103,082 utterances, around 208 hours presented
in a .trn file format. The MyST corpus is used for this
paper because it is the biggest corpus of child speech
freely available for research use.

o VoxCelebl [46] : VoxCeleb 1 contains audio recordings
of celebrity voices extracted from YouTube. It contains
153,516 utterances from 1,251 speakers.

o LibriSpeech [47] : LibriSpeech is a read English speech
dataset derived from audiobooks. The data contains
approximately 1000 hours of adult speech data from
2400 speakers. The data is divided into two sets, “‘clean”
and ““other” where the clean set contains less noisy data
as compared to the other set. The “clean” set contains
460 hours of data, and the “‘other’” set contains 540 hours
of data.

o VCTK [48] : This dataset contains speech recordings
from 110 English speakers each reading about 400 sen-
tences from a newspaper. The data contains recordings
from various English accents and is highly used in
multi-speaker TTS research.

1) PROBLEMS IDENTIFIED IN MYST DATASET

A study on the MyST dataset was performed to measure the
amount of data in MyST with and without a transcript. This
was done to extract data available with annotation and to see
if it can be used for training TTS. A comparison between
the complete MyST dataset and filtered MyST dataset where
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MyST (Complete) MyST (with transcripts)
Seconds # of Duration # of Duration
(range) utterances (in hours) utterances (in hours)
0-5 113,219 62.19 51,350 27.98
5-10 43,782 87.78 20,723 41.78
10-15 22,321 75.80 11,096 37.78
15-20 11,477 54.86 6,067 29.04
20-30 9,282 61.89 4,991 33.28
30-40 2,796 26.50 1,542 14.61
40-50 930 11.40 517 6.32
50-60 347 5.24 184 2.78
60-70 146 2.61 83 1.48
70-80 74 1.52 38 0.78
80-90 53 1.25 23 0.54
90-100 19 0.49 5 0.13
100 Above 41 1.95 17 0.94
Total 228,874 393.51 103,082 197.48

transcripts are available is presented in Table 2. This table
provides information on the utterance count and duration of
utterance concerning the duration range.

From Table 2, it was observed that 197.5 hours of child
speech data is available with annotation. Although a lot of
this data can’t be used having different memory requirements
on different GPUs. In our experiments, that data between the
range of 10-15 seconds to be most useful.

Some initial experiments were performed on the MyST
dataset without using the Multi-speaker TTS approach (see
section III.A). The results obtained from these experiments
were unintelligible. The output waveforms did not have any
phonetic meaning and were missing quite some pronuncia-
tions. On a more detailed manual inspection of the MyST
dataset, a few common problems were identified. The tran-
scripts of some example audio files are listed below to illus-
trate the problems in the MyST dataset:

« Audio files containing noise in their utterances without

any phonetic meaning.
e ‘“‘<noise>"
e “it’s glowing <breath>"
« Audio files that are not coherent or indiscernible.
e “in oxygen right <indiscernible>"’
e ‘“‘can hear sound because of that <indiscernible>"
« Audio files are too small in length
e ‘“‘energy <noise>"
« Audio files are too long
e ““it’strying to show us that all the things that it needs
all the things that the plants needs to grow it needs
soil on the bottom it needs at least a ground a top
the a a top to lay on for the plant to grow so you
can see it that’s only with flowers and plants it’s not
with vegetables and it needs and it needs the energy

from the sunlight to grow and it needs water because
somebody’s watering the plant.”
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TABLE 3. MyST vs TinyMyST.

MyST MyST (with TinyMyST
(Complete) transcripts) | (Usable for TTS)
Speakers 1371 738 670
Duration (in 393.5 197.5 19.22
hrs)
# of utterances 228,874 103,082 7152
Mean duration 17.22 mins 16.05 mins 1.73 mins
per speaker
Speaker with 013023 013023 013023
most data (110.38 mins) | (81.71 mins) (8.77 mins)
Speaker with 012002 007389 018216
least data (0.96 secs) (0.96 secs) (10.2 secs)

mins: minutes, secs: seconds
o Transcription containing text
information.

e “(O WO
o Repetition of words/stammering noticed in children’s
voices.

with no phonetic

e “‘um we measured how big a millimeter meter is a
meter and a kolome- a * kilometer
Our examination of MyST led us to further clean the MyST
dataset for TTS training. In this process a subset of MyST,
hereafter referred to as TinyMyST was created.

2) TINYMYST

It is a small subset of the MyST dataset created using var-
ious pre-processing scripts to make the data suitable for
TTS acoustic model training. MyST was cleaned to select
only audio files with existing transcriptions. All audio files
lesser than 10 seconds and greater than 15 seconds were
removed. The utterances shorter than 10 seconds contained
mostly noise or unintelligible speech and those longer than
15 seconds were removed to avoid GPU memory overflow
during training. All the transcript files were converted from
.trn format to .zxt file format.

The TinyMyST dataset still contains a lot of noisy data.
Some of the excessively noisy data were removed man-
ually by inspecting the transcripts and listening to the
audio samples. The data obtained after cleaning contained
7152 utterances and accounted for 19.22 hours. A detailed
comparison of MyST and TinyMyST datasets was performed
to see differences in the two datasets in terms of speaker iden-
tities and utterances (see Table 3). TinyMyST dataset on aver-
age contained 1.72 minutes per speaker having 670 speakers.
Speaker identity ‘013023’ had the most data with 8.77 min-
utes and speaker identity ‘018216 has the least data with
10.01 seconds. The speaker ‘013023’ had the most data in
MyST as well to be around 110 minutes.

To extract more TTS usable data, an audio sample from
more than 15 seconds long can be used to split them into
smaller chunks. A forced aligner! is used to align the audio
files with transcripts. Time alignment information from the
alignments to split the longer audio files into smaller sam-
ples, however, it was observed that the audio alignment was

1 https://github.com/Montreal CorpusTools/Montreal-Forced-Aligner
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FIGURE 1. Model Overview: Speaker Encoder, Acoustic Model, and
Vocoder Models trained independently (from [33]).

not very accurate for the child speech and there were a
lot of mismatches between the transcripts and audio files.
This was probably due to fact that the pretrained forced
aligner was trained on adult speech and doesn’t work very
well for aligning child speech. Therefore, TinyMyST was
used (as described earlier) for performing all the child TTS
experiments.

3) DATA PREPROCESSING FOR TTS USAGE

LibriSpeech and TinyMyST datasets were preprocessed as
per the guidelines mentioned in LibriTTS [49]. The LibriTTS
dataset was specifically created for TTS research, therefore
similar guidelines were followed in our experiments. The
following changes were made:

« Audio files were converted to 16-bit depth audio files
with 24Khz sampling rate (WAV format), This was done
using the pydub? audio library.

« Text data was normalized by replacing abbreviations and
punctuations.

« Whitespaces were normalized

o All characters were made uppercase.

B. MULTI-SPEAKER TTS MODEL

The neural network used to achieve TTS for children in this
study is based on [33], It works by combining a speaker verifi-
cation network with the SOTA Tacotron TTS model. Though
Tacotron is SOTA for TTS, it was designed to be trained using
a single-speaker speech dataset such as the LJSpeech [50]
dataset, hence, it can only synthesize speech with acoustic
characteristics of the single speaker whose data was used
in training. To function effectively for multiple speakers,
Tacotron needs to be adapted for that purpose. This adaptation
has been achieved in this multi-speaker TTS model [33] by
introducing different speaker identities in the form of speaker
embeddings as additional input to the Tacotron network. As a
result, the multi-speaker TTS [33] comprises three different
neural network models, each of which focuses on a specific
subtask namely, Speaker Encoder used for speaker verifica-
tion task, Acoustic model used for spectrogram synthesis,
and a Vocoder for audio waveform generation (as shown in
Figure 1).

For our work, generalized end-to-end (GE2E) loss was
used for speaker verification [22], Tacotronl as an acoustic
model [8], and WaveRNN as Vocoder [20]. The original
approach [33] is adapted for child speech synthesis by first

2https:// github.com/jiaaro/pydub
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pretraining the model on an adult speech dataset after which,
it is fine-tuned with the child speech dataset.

The speaker encoder generates speaker embeddings,
encoding speaker identity information extracted from the
utterances. Similar voices are mapped closer to each other
in a latent space representation. The acoustic model gen-
erates spectrograms from text conditioned on the speaker
embeddings. The vocoder then converts these spectrograms
into audio waveforms. At inference time, a short refer-
ence utterance (ground truth) of a child’s voice is passed
through the speaker encoder to generate the corresponding
speaker embeddings, on which the acoustic model will be
conditioned. The three different neural network models are
described as follows.

1) SPEAKER ENCODER

The first stage of the multi-speaker TTS training involves the
training of a speaker verification (speaker encoder) model.
Speaker Verification is the process of determining if an utter-
ance belongs to a specific speaker. The speaker encoder is
used to train the model for the speaker verification task using
a mix of noisy and clean speech data without transcripts.
The data used consists of both adult and child speech data
from thousands of speakers (see Table 4). This was done to
introduce both child and adult speakers in the model for better
generalization. The output of this model conditions the acous-
tic model to generate the required mel-spectrograms from
a reference speech signal of the target speaker. The model
is trained to capture the characteristic features of different
speakers.

The model takes input as log mel-spectrograms computed
from utterances of each speaker, trains using the GE2E loss
and converts them into a fixed dimensional vector called
d-vectors. These d-vectors are optimized over GE2E loss
to differentiate the speakers, such that the same speakers
have embeddings with high cosine similarity and different
speakers are far apart in the embedding space.

During training, complete utterances are segmented into
partial utterances of 1.6 seconds. These parameters were kept
the same as explained by authors [51], [22]. The utterance
embedding is calculated using 800ms windows for inference,
with a 50% overlap. The silence was removed from the utter-
ances using the webrtcvad? tool for Voice Activity Detection
(VAD). Each segment is passed through the network individ-
ually, the outputs are averaged and normalized to create the
final utterance embedding as described in [22].

The encoder model is trained using 4 datasets, MyST, Vox-
Celebl, LibriSpeech, and VCTK. Equal Error Rate (EER) is
used as a metric for the validation of the speaker encoder. The
default EER metric from [51] is used in this work as authors
of [33] have not explicitly specified the training, test, and
validation criterion they are using for EER calculation. The
EER values are presented in Table 4. The model trained for
one million steps was used in the multi-speaker TTS model as

3 https://github.com/wiseman/py-webrtcvad
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TABLE 4. Speaker encoder training details.

Dataset used for Encoder Size (in Iterations EER
Training hours)
- MyST
- VCTK 1329 1M 5%
- VoxCelebl
- LibriSpeech [Other]
Dataset
mels
BT s 7
| Speaker Encoder |
P | 1
:_____T_rim'fg____Jl : weights
’— 1 update
embeddings :
|
|
GE2E | | |
LOSS

FIGURE 2. Pipeline for Speaker Encoder training. The dotted line
represents the training loop for the Speaker Encoder training.

relatively insignificant improvements were seen in the EER
after this point.

All the datasets were pre-processed into the coding format
required for training the encoder as described in [51]. Even
though half the MyST dataset is not transcribed, the complete
MyST dataset can be used for Speaker Encoder training as it
does not require any transcription data. The pipeline for the
speaker encoder training can be seen in Figure 2.

A UMAP projection [52] is created to visualize the training
by taking a random set of 10 utterances from 10 speakers.
Utterances with similar embeddings are located close to each
other in the latent space representation and have similar
speaker characteristics.

This model creates individual clusters of speaker embed-
dings as can be seen in the UMAP projection (see Figure 3.
Each point on UMAP represents an utterance. The same color
points represent the same speaker. Encoder gradually learns
to separate the speakers. Initially, there is a lot of overlap
across speakers, but eventually, each speaker has their utter-
ances clustered and well separated from the other speakers.
The training evolves with increased training steps.

2) TACOTRON ACOUSTIC MODEL

For the speech spectrogram synthesis, the TTS model archi-
tecture and hyperparameters used in this study are the
same as in the work of [51] (More details are provided
in Section IIT). The authors used a modified version of the
original Tacotron architecture [8]. The model consists of an
encoder, an attention-based decoder, and a post-processing
network. Since Tacotron is originally a single-speaker TTS
model, it was modified to work for multi-speaker TTS by con-
necting the speaker encoder to it. Speaker embeddings from
the encoder are concatenated with text (character/phoneme)
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FIGURE 3. UMAP projections at different training steps for speaker
encoder training. Ten different colors represent ten different speakers
with ten utterances each.

embeddings from the text encoder, after which an attention
mechanism is applied prior to decoding into a spectrogram.
Unlike the speaker encoder, the acoustic model takes in both
audio(utterance) and associated text(transcript) as inputs.

In this work, the acoustic model was first trained with only
adult speech data (acoustic model training I), specifically,
the Librispeech ‘clean’ data, until it started to converge at
250k steps and then finetuned with the TinyMyST child
speech dataset (acoustic model training II) for up to 750k
additional steps (more details in Section III). The pipeline for
the acoustic model training can be seen in Figure 4.

3) WAVERNN VOCODER

The vocoder used is WaveRNN [20], which is an improve-
ment over the WaveNet [16] originally used by the authors
of [33]. WaveRNN is a recurrent network for perform-
ing sequential modeling of audio from mel-spectrograms.
An alternative version of WaveRNN is used, having a few
architectural changes as provided by the author in [53] due
to the popularity of the model as it reduces sampling time
while maintaining high output quality. WaveRNN uses Gated
Recurrent Unit (GRU) in comparison to convolutions used
in WaveNet. The input mel-spectrograms and their corre-
sponding waveforms are segmented at each timestamp. A 1D
Resnet-like model is used to generate features for layered
connections in the alternative WaveRNN architecture. The
upsampling is also performed on the mel-spectrogram to
match the length of the target waveform. The resulting vector
is passed through a combination of GRU and dense layer
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Acoustic Model Training | Acoustic Model Training Il

Trained on
Librispeech up to
250k iterations

Finetuned on TinyMyST
—————— » from 250k iterations up
to 750k iterations

Pretraining with Adult Dataset Finetuning with Child Dataset

(W]
FIGURE 4. Pipeline for Acoustic Model training. A model with solid
contour represents the pretrained model. Dotted contours represent the
acoustic model training loop. Fine-tuning step for Acoustic model
training. Acoustic model training | represent the acoustic model being
trained with LibriSpeech dataset for up to 250k iterations. Acoustic model
training Il represents fine-tuning the acoustic model I with the TinyMyST
dataset from 250k iteration onwards up to 750k iteration.

transformations in four-way connections. These connections
are concatenated at different steps to generate the correspond-
ing vector representation. This vector is passed through two
dense layer connections which finally generate the encoding
of raw audio. The output audio is generated at a 16-bit depth
and 16 khz sampling rate.

The predicted mels from the acoustic model trained on
LibriSpeech (from acoustic model training I) were used to
train the vocoder. The vocoder trained up to 250k iterations
was used to generate all waveforms in this study. The pipeline
for vocoder training can be seen in Figure 5. Fine-tuning
experiments with the TinyMyST dataset didn’t improve the
quality of the vocoder (more discussion in Future work).

Vocoder for child TTS hasn’t been explored before in
detail. This is a new area of research. It was observed
that WaveRNN has popularly been used as a universal
vocoder [54]-[56] and it evidently works well with unseen
speakers in multi-speaker models as well [57]. Therefore, for
the scope of this paper, WaveRNN (trained on LibriSpeech)
is used as a universal vocoder with synthetic child voices.

lll. EXPERIMENTS

A. INITIAL EXPERIMENTS

In our initial experiments, multiple SOTA TTS models
[10], [13]-[15], [21] were unsuccessfully trained, including
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FIGURE 5. Pipeline for Vocoder training. Models with solid contours are
pretrained models. The dotted contour represents the training loop for
Vocoder.

Tacotron 2,* using the transcribed subset of the MyST dataset.
Figure 6 shows an example of an alignment plot from
Tacotron 2 training. As can be seen, there was no sign of
alignment even after 200k iterations.

Further experiments were conducted using the cleaned sub-
set of MyST (TinyMyST), which showed some alignments as
seen in the Tacotron 2 alignment plot in Figure 7. However,
though child-like in terms of pitch, the synthesized speech
signals were completely unintelligible. Missing information
such as ‘End of sentence’ was observed which mostly con-
tained noise content.

Next, fine-tuning the pretrained NVIDIA Tacotron 2 model
on a single child’s MyST dataset utterances resulted in
slightly intelligible but highly robotic and unnatural synthe-
sized speech. Figure 8 shows the improved alignment plot
from the finetuned Tacotron2.

Since there were not enough MyST utterances for a single
child to sufficiently train Tacotron2, different multi-speaker
TTS models were explored [21], [26], [27], [58] and the
speaker verification-based method [33] produced the most
promising results. Hence, this method was used in our main
experiments.

B. MAIN EXPERIMENTS

As seen in our methodology (Section II.B), a modified
approach based on [33] was used by incorporating an extra
layer of fine-tuning in the training step.

The proposed neural child voice TTS was trained on a Tesla
V100 GPU. Each of the three networks — Speaker Encoder,
Acoustic model, and Vocoder were trained separately.

The Speaker Encoder was trained with a batch size
of 128 and a learning rate of 0.0001. The model was
trained for 15 days for up to 1M steps. EER of 5% was
observed at this point with no further improvement afterward.

4NVIDIA/tacotron2: https://github.com/NVIDIA/tacotron2
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FIGURE 6. Alignment plot for Tacotron 2 trained with MyST dataset for up
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FIGURE 7. Alignment plot for Tacotron 2 trained up to 200k steps with
TinyMyST Dataset.
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FIGURE 8. Alignment plot for Tacotron 2 trained up to 200k steps with
TinyMyST Dataset, pretrained with LJ Speech Dataset up to 100k steps.

Additional parameters settings are mentioned here.’> The
default embedding size of 256 was used for this training.

For the acoustic model, the network was trained using
a learning rate of 0.0001 for 250K steps (pretraining) and
0.00001 for 750k steps (fine-tuning). The batch size was kept
constant at 72. Entire training (up to 750k steps) took 9 days to
complete. Additional parameters details were kept the same
as Tacotron 1, these details are mentioned here.®

The alignments plot for encoder-decoder timestamps can
be seen in Figure 9, the x-axis represents the encoder
timesteps and the y-axis represents the decoder timesteps
of Tacotron training. The training is done on LibriSpeech
up to 250k steps generated a good alignment plot. Align-
ment weakens when switched to TinyMyST Dataset, but it

SEncoder Hyperparameters: https://github.com/CorentinJ/Real-Time-
Voice-Cloning/blob/master/encoder/params_model.py

6 Acoustic Model Hyperparameters: https://github.com/CorentinJ/Real-
Time-Voice-Cloning/blob/master/synthesizer/hparams.py
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FIGURE 9. Alignment plots at different training steps during transfer
learning from adult to child Tacotron TTS.

gradually improves with increasing training steps. During
inference, our model was tested on multiple checkpoints
taken at intervals of 50k iterations. A few of these iterations
are mentioned in Figure 9. Even though the alignment at
some of these steps looks the same, an improvement was
noted over time with the synthesized child voices. This was
determined subjectively during training by listening to the
synthetic child speech generated. The training was halted
at 750k steps as improvements in the alignment graph had
become imperceptible after 700k steps. The output waveform
did not show any improvements beyond this step. The model
trained up to 750k iterations is used to provide audio samples
in this paper.

The Vocoder was trained at a batch size of 128 and learning
rate of 0.0001 and took 4 days of training to reach 250k
iterations. Most of the parameters for the vocoder were kept
the same as the original code.’

The synthetic child voices during inference were natural
sounding and the trained model demonstrated an ability to
synthesize quite challenging phrases that were unseen in the
TinyMyST dataset. This was tested by using ‘tongue twisters’
as a reference text for synthesizing speech. However, it was
also noted that some phonemes were not synthesized cor-
rectly and lost their meaning during synthesis. These findings
are discussed in more detail in Section I'V.

Code-related material and synthesized speech from
these experiments will be made available in our GitHub
Repository.®

IV. RESULTS AND EVALUATION

The evaluation in TTS is usually done by taking a Mean
Opinion Score (MOS) [59] on the synthetic speech for Speech
Similarity and Speech Naturalness.

TVocoder Hyperparameters: https://github.com/CorentinJ/Real-Time-
Voice-Cloning/blob/master/vocoder/hparams.py
8GitHub for this paper: https://github.com/C3Imaging/ChildTTS
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There are many objective and subjective evaluation meth-
ods proposed by researchers [60]-[66]. These traditional
speech evaluation methods work well for evaluating adult
speech but are not so suitable for child speech. A perfect adult
speech will contain fluent pronunciation of a word/phoneme
however this is not the case for most child speech. Natural-
ness in child speech includes pauses, breaks, and pronunci-
ation difficulties in the speech. Other challenges were noted
with the start and end of phrases where children tend to be
somewhat hesitant when starting a phrase and may wander
towards the end of one. Children can also mispronounce
words, or struggle with the phonetics of a particular phrase.

These characteristics tend to manifest in the speech model
and a range of artifacts were noted that affect the quality of
the phrases synthesized by our pipeline. It was noted that
the first or last words in many phrases were either missed
entirely or subject to various distortions or artifacts. In the
middle of a phrase, there could occasionally be slurring or
arbitrary elongating of one or more words. Another artifact
observed was that the pace or tone of voice could change
abruptly in the middle of a phrase. Despite these artifacts,
the majority of phrases were quite intelligible, and a large
proportion was also very natural sounding. Therefore, there
is a need for a better subjective evaluation method for child
speech synthesis.

In the following, we present the results obtained using
the proposed subjective evaluation method and the various
listening tests performed (subsection 4.A), two objective
evaluation methods, based on MOSNet (subsection 4.B) and
an ASR system (subsection 4.D) and we evaluate the simi-
larity of the synthesized speech and natural child speech (in
subsection 4.C).

A. PROPOSED SUBJECTIVE EVALUATION METHOD

To check the phonetic coverage of our child speech TTS,
Harvard sentences [60] were used, which are a set of 720
phonetically balanced sentences. These sentences cover most
of the phoneme range and were designed to be implemented
with Voice over Internet Protocol (VoIP) technology. These
texts were used to generate synthetic child speech. This was
done to check the subjective quality of synthesized audio with
respect to phoneme coverage.

Our evaluation method uses a MOS-like evaluation with
different categories for scoring. When generating synthetic
voices using Harvard sentences, it was observed that some
sets of phonemes were not pronounced correctly even when
synthesized using different reference child speakers (more
detail in a later section). After our initial subjective study of
these 720 synthesized audio samples, it was decided that a
more detailed evaluation protocol was required to address the
various artifacts observed and identify what additional data
samples might be needed to further improve our model. For
this reason, our evaluation was performed in two phases. For
each of the two phases, different evaluators were gathered to
perform the speech evaluation. Each evaluator was asked to
listen to synthetic audio files using Headphones/Earphones
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in a noise-free environment. They were asked to rate each
of the synthetic voices assigned to them from a range of
1 to 5, for each of the different categories in two phases. The
categories included Speech Intelligibility, Voice Naturalness,
and Voice Consistency. Voice Consistency contained three
sub-categories of its own namely, Start of Phrase quality,
Middle of Phrase quality, and End of Phrase Quality.

Evaluation data was provided in a OneDrive Environment.
All the synthetic voices were shared in a common OneDrive
folder to the evaluators and a common spreadsheet was circu-
lated containing the utterance ID of Harvard sentences used
for synthesizing a child’s voice. While listening to many
different natural child voices, it was also noticed that recorded
child audio can be a difficult task to understand if not pro-
vided with a suitable transcript. Some of the child’s speech
can be non-meaningful as mentioned in problems with the
MyST section. After performing many different tests and
trials using child speech, the use of transcripts as a part of
MOS-based evaluation is considered to be a more natural
way of evaluating child speech. Therefore, corresponding
transcript information is also provided in the spreadsheet to
each evaluator to base their conclusion on ‘what they hear
in child audio’ and ‘what they read in child transcripts’.
This way more coherent patterns can be observed among the
phonemes and graphemes in a child’s voice for each of the
mentioned categories. An example of this spreadsheet can be
seen here.’

By performing the evaluation using OneDrive environ-
ment, it was easy to distribute the synthetic speech files to dif-
ferent evaluators without having to spend time and resources
on expensive Mushra-based evaluations [67] or crowdsourc-
ing the evaluation task on platforms like Amazon Mechani-
cal Turk (AMT) [59], [68]. Mushra-based evaluations were
also avoided due to potential biases that can occur in these
tests and how these biases can impact synthetic child voice
evaluation for MOS [69]. Most of these TTS evaluations
have been conducted before with synthetic adult speech, this
novel synthetic evaluation is implemented for first-time with
synthetic child speech. Using a common spreadsheet made it
effective to perform analysis of spreadsheet for MOS using
pandas and other python-based tools.

1) PHASE-1 EVALUATION

For the phase-I evaluation, all 720 Harvard sentences were
generated using our proposed TTS method. Two random ref-
erence utterances were selected from the TinyMyST dataset
and were used to generate all the Harvard sentences. These
720 sentences were shared among 5 evaluators in a spread-
sheet document, who rated the voices from 1 to 5 based
on Speech Intelligibility and Voice Naturalness. The MOS
ratings from 1 to 5 were further explained in the spreadsheet
file as can be seen in Table 5.

9Example Spreadsheet: https://www.github.com/C3Imaging/ChildTTS/
blob/main/synthetic%20evaluation%20example/Example.xlsx
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TABLE 5. MOS (from 1 to 5) explained for speech intelligibility and voice
naturalness.

Score | Speech Intelligibility Voice Naturalness

Voice is clear, all | Voice consistently paced with
5) words identifiable similar timbre across the entire
phrase; good voice quality

Voice is mostly clear; | Some disjointness in terms of
4 single word unclear pacing/timbre; mediocre but
plausible voice quality

Significant differences in
pacing/timbre across  different
portions of the phrase; weak voice
consistency across different parts of

Voice understandable;
3) multiple words
unclear

the phrase
Difficult to understand | Substantial differences in
2) most words in a | pacing/timbre  across  different
phrase portions of the phrase; distinctly
different  voices for  different
words/parts of the phrase
(1) Difficult to understand | No consistency in terms of voice or

any words in a phrase | pacing across the phrase

TABLE 6. MOS from phase-I evaluation with 95% confidence interval

Categories MOS
Voice Naturalness 3.88+0.27
Speech Intelligibility 4.13+0.34

The spreadsheet was later analyzed to get the final mean
opinion score in each category. MOS of 3.88 for voice nat-
uralness and 4.13 for speech intelligibility was observed as
seen in Table 6.

An average score for each of the 720 sentences was cal-
culated for the combined value of speech intelligibility and
voice naturalness. All the 720 sentences were sorted into
difficult and easy sentences with respect to the children’s
linguistic capabilities. This was done to keep track of Harvard
sentences where synthesized speech becomes unintelligible
and inarticulate.

2) PHASE-II EVALUATION
After our phase-I evaluation, a common set of sentences
were observed where pronunciation sounds unintelligible
at the start, middle, or end of sentences for specific
words/phonemes. There was an inconsistency in voice qual-
ity. These sets of sentences are the ones that were not learned
properly during training or were missing in the training
dataset for child audio. To make a note of these sentences,
extra categories of ‘Voice Consistency’ were added to the
phase-I evaluation. Therefore, all the 3 sub-categories under
Voice Consistency were used in the second phase of the eval-
uation. These subcategories included ‘Start of Phrase Qual-
ity’, ‘Middle of phrase quality’ and ‘End of phrase quality’.
The MOS ratings from 1 to 5 for each of these categories were
also explained in the spreadsheet as mentioned in Table 7.
For the second phase of evaluation, the evaluation was
undertaken by 20 evaluators divided into 4 groups. This was
done as per the guidelines mentioned in [70] for performing
MOS evaluations. For each group, a speaker identity was
selected from the TinyMyST dataset. All the speaker iden-
tities were sorted, and the top 20 speaker identities were
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TABLE 7. MOS (from 1 to 5) explained for voice consistency and its three
sub-categories.

Voice Consistency

Score | Start of phrase & | Middle of phrase & End of phrase
first word quality central word & last word
quality quality

First word is clear; | Middle of phrase is | Last word has

5) excellent starting | clear; excellent voice | excellent quality
quality & | quality &
intelligibility intelligibility
Understandable; Understandable; Understandable;
4) minor distortions | minor distortions or | minor

or noise; low
intensity starts of
first word

Start of first word
unclear or more
3) significant

distortions of first
work or start of

noise; some pacing | distortions  or
variations or slurring | noise

of single word
Significant Understandable;
distortions of middle | but significant
phrase or slurring of | distortions  or
multiple words but | noise

still intelligible

phrase
First word missing | Substantial Not
or strongly | distortions;  multi- | understandable;
distorted; word  slurring  or | substantial

2) distortions or | noise impact strongly | distortions,
noise impact | on phrase | missing or
strongly on phrase | intelligibility unintelligible
intelligibility words or noise

Start of phrase | Middle of phrase | Multiple words

1) unintelligible, unintelligible, not
missing or | missing or severely | understandable
severely distorted distorted

TABLE 8. Selected speaker identity information in TinyMyST VS TTS
utterances for the same speakers.

Speaker | Minutes Hours # of Real # of generated
1D utterances TTS utterances
002113 7.75 0.13 41 50
008045 7.88 0.13 42 50
013020 8.77 0.15 47 50
995737 5.70 0.10 30 50

selected, having the most minutes. Among these 20 identities,
4 speaker identities were randomly selected. All the 4 groups
are named as ‘013020, ‘008045°, ‘002113°, and ‘995737’,
corresponding to each identity label. This approach was taken
to select speakers with the most data and also to keep the
process randomized. More information on these selected
speakers can be seen in Table 8. This table is also used for
speaker similarity and objective intelligibility experiments in
the future sections.

A reference child utterance was selected randomly from
each of these groups, and 50 Harvard sentences were selected
randomly for each of the groups. Therefore, 50 Synthetic
utterances were generated, and all the evaluators were asked
to rate the utterances assigned to them.

MOS results from the phase-II evaluation are presented
in Table 9. MOS of 3.95 was observed for Speech Intel-
ligibility, 3.89 for Voice Naturalness, and 3.96 for over-
all Voice Consistency (including the three sub-categories).
MOS of 4.07 was observed for ‘Start of phrase quality’,
4.18 for ‘Middle of phrase quality’, and 3.62 for ‘End of
phrase quality’. The MOS score implies that the quality of
synthesized child speech is quite good. However, there is still
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TABLE 9. MOS from phase-Il evaluation with 95% confidence interval.

VC
SI VN

SP MP EP
013020 4.03 4.06 4.44 435 3.61
008045 3.70 3.63 3.94 3.92 3.20
002113 362 339 3.62 3.89 348
Overall 4.07+0.36 | 4.18£0.21 | 3.62+0.45

MOS | 3.95£0.30 | 3.89+0.32
3.96+0.32

SI: Speech Intelligibility, VN: Voice Naturalness, VC: Voice Consistency, SP: Start
of phrase and first word quality, MP: Middle of phrase and central word quality,
EP: End of phrase and last word quality.

room for improvement in the ‘End of phrase quality’ of Har-
vard sentences. There is information loss observed at the end
of most sentences containing inarticulate and unintelligent
information or noise. The reason for this information loss can
be redirected back to the child dataset used for training. Even
though TinyMyST is much cleaner than the MyST dataset,
it still contains some of the problems seen in Section IL.A.1.
The information obtained from voice consistency will be
discussed more in future work.

A similar experiment was also performed using the real
utterances from Table 8 to obtain a baseline MOS on natural
child speech. 15 random real utterances were selected from
the real speakers mentioned in Table 8. Evaluators were asked
to perform a similar evaluation as done in phase-II evaluation
for all the selected 60 utterances. A comparison between the
baseline MOS on Natural MyST and synthetically generated
utterances is mentioned in Table 10.

Synthetic Speech MOS for three categories is very close to
Natural Speech MOS. There is a MOS difference of ‘0.26’
for Speech Intelligibility, ‘0.16’ for Voice Naturalness, and
‘0.12° for Voice Consistency between natural and synthetic
speech. From Table 10, it can be concluded that the MOS
for Natural and Synthetic child speech are quite close to
each other. This subjective evaluation approach is proposed
as a part of this paper. Due to very limited work done on
child speech synthesis, we did not find any reliable way of
performing subjective evaluation over the synthesized child
speech. From our experience with the evaluation of synthetic
child speech, this new metric of evaluation can help evalu-
ate synthetic child speech and can help further this area of
research. It is also intended to use this proposed approach for
our future work with child speech synthesis.

B. OBJECTIVE NATURALNESS EVALUATION USING A
PRETRAINED MOSNET

For this objective evaluation, a pretrained MOSNet was used,
which is trained on VCC 2018 dataset from Blizzard Chal-
lenge [66] comprising of adult speech. According to their
paper, MOSNet predictions yield a high correlation to human
ratings. As MOSNet was trained on adult speech, it is unlikely
that it will generalize well for child speech. It won’t be
possible to train a MOSNet with child voices as there is not
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TABLE 10. MOS natural speech VS MOS synthetic speech with 95%
confidence interval.

vC
SI VN
SpP MP EP
Natural 4324042 | 4.0140.6 | 3.9+0.62
Speech
MOS 4.21+0.42 | 4.05+0.34
(from 4.08 + 0.54
MyST)
Synthetic
Speech
MOS 3.95+0.30 | 3.89+0.32 3.96 +0.32
(from
Table 9)

SI: Speech Intelligibility, VN: Voice Naturalness, VC: Voice Consistency, SP: Start
of phrase and first word quality, MP: Middle of phrase and central word quality,
EP: End of phrase and last word quality.
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the plants basic needs are dirt water

the plants basic needs are dirt water
and sunli i

d sunlight

c r
being an herbivore means that you
only eat plants

&
being an herbivore means that you
only eat plants

FIGURE 10. Spectrogram comparison between reference and synthesized
child audio for 5 audio samples used with MOSNet.

enough data to perform a large-scale evaluation such as a
blizzard challenge. This objective evaluation was performed
to see the correlation between reference child audio and
synthetic child audio. A random set of 50 utterances were
selected from the TinyMyST dataset as a part of this inside
test. These utterances were used as reference utterances and
the corresponding transcripts were used to generate synthetic
speech for each of these utterances. This gave us 50 reference
and 50 synthetic utterances which were used to calculate
MOS using MOSNet. MOS score for 5 samples can be seen
in Table 11. The spectrograms for these 5 samples can be seen
in Figure 10.

Table 12 shows the overall MOS output for MOSNet. MOS
of 2.96 was observed for reference child audio and 2.66
for synthetic child audio. There is only a 0.3 difference in
MOS between reference and synthetic child voices. MOSNet
trained on adult speech data is not expected to give MOS
ratings correlated with human MOS ratings for child speech
data. MOSNet was only used to get a correlation between the
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TABLE 11. MOSNet output for 5 samples.

Sample Reference Child Speech MOS Synthetic Child Speech MOS
1 2.25 2.80
2 3.08 2.77
3 3.18 291
4 3.17 2.51
5 3.17 2.99

TABLE 12. MOSNet output for 50 samples with 95% confidence interval.

Samples Reference Child Audio Synthetic Child Audio
MOS MOS
50 2.91+0.07 2.60 +0.06

reference child audio and synthetic child audio. This gave us
a comparison between reference and synthetic child voices
as to how close they are to each other in terms of audio
features calculated using MOSNet. The results confirmed that
MOSNet output for reference child speech and synthetic child
speech are very close to each other with a comparative MOS
difference of 0.3.

C. SPEAKER SIMILARITY EVALUATION USING A SPEAKER
VERIFICATION SYSTEM

Speaker similarity between a synthesized speech and a real
speech can be calculated using a Speaker Verification (SV)
system. The pretrained speaker encoder from section 2.B.1.
was used with a third-party tool'® to extract and visualize
the speaker embeddings. This tool uses cosine distance to
calculate the similarity between the two embeddings. The
same speakers mentioned in our subjective evaluation (see
Table 8) were used for this evaluation. 10 utterances were
randomly selected for both real and synthetic speech for each
of the 4 speakers mentioned in Table 8. 1 male and 1 female
speaker from the LibriSpeech dataset were also added with
10 utterances each to show the speaker similarity comparison
between an adult and child speaker. A visualization of this
similarity in a 2D projection can be seen in Figure 11, ‘gt’ is
used as a label for the ground truth of the speaker and ‘ss’ is
used as a label for the synthetic speech of the same speaker.
‘Adult_Male’ and ‘Adult_Female’ are two randomly selected
male and female speakers from the LibriSpeech Dataset.

From Figure 11, it can be inferred that Male, Female, and
Child speech have a difference in similarity from each other.
Male and Female adult speakers are far apart from each other
and from child speakers in this 2D projection of speaker
embeddings.

To further comment on the similarity between real child
speech and synthetic child speech, the ‘child speech’ contour
from Figure 11 is extended to get a more visual representation
of embeddings. This can be seen in Figure 12. The ‘gt’ labels
and very close to ‘ss’ labels in this 2D projection space.

These embeddings are 256-dimensional feature vectors
trained by our speaker encoder. Therefore, cosine similarity
was used to further calculate the cross-similarity between

1OResemblyzer: https://github.com/resemble-ai/Resemblyzer
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Adult Male @@ Speakers

® Adult Female at_995737

® Adult Male ® ss 002113

gt 002113 ss_008045

® gt 008045 ® ss.013020

e gt 013020 ® ss 995737

Child Speech
@
& Adult Female
i ‘

FIGURE 11. Projections of embeddings between different real and
synthetic child speech along with adult speech. The child Speech region
[both ground truth and synthetic speech] is outlined by a solid black
rectangle. The projections include a cluster of 10 voices selected from
10 different speakers. ‘ss’ refers to synthetic child speech and ‘gt’ refers
to ground truth child speech.

L s
L g

Speakers
gt_002113 ® 55002113
® gt 008045 ss_008045
® gt 013020 ® 55013020
gt_995737 ® ss5 995737

FIGURE 12. Projections of embeddings between different real and
synthetic child speech. A solid black line is used to show the distance
between the ground truth and synthetic speech from the same speakers.
This line was drawn from the centroid of each cluster to show the visual
representation of similarity between real and synthetic speech.

each speaker. Each of the 10 Speakers with 10 utterances
each (1 Adult Male, 1 Adult Female, 4 Ground Truth Child,
and 4 Synthetic Speech Child) were divided into 2 sets A and
B. Embeddings are extracted for each of the utterances for
each of the sets and averaged together for each speaker. This
gave us 10 unique speaker embeddings in sets A and B each
for 10 speakers. Cosine similarity is finally used to measure
the similarity between each of the 10 speaker embeddings in
sets A and B. A plot for the cross similarity between speakers
can be seen in Figure 12.

In Figure 13, speaker similarity between synthetic speech
and ground truth for speaker ‘995737’ is 0.91, whereas for
speakers ‘013020’ and ‘008045’ is approximately around
0.82 and finally for the speaker ‘002113’ is approximately
0.7. This cross-similarity matrix gives us an idea of how
close synthetic child voices are in comparison to the real
child voice. It also shows us how different an Adult Male
and Female Speech is in comparison to a child’s speech.
Overall, the similarity between most of the child and adult
speech is between 0.3-0.4 whereas the similarity between
most of the synthetic child speech and ground truth child
speech is between a range of 0.65-0.85. Cross-similarity
across the diagonal signifies that an utterance in set-A is 95%
similar to utterances in set-B having the same speakers. More
conclusions can be drawn from Figure 13, however, for the
scope of this research, it is only used to show the different
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Cross-similarity between speakers
speaker_id—utterance_set
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Adult_Female8

Adult_ Male8

0021138

0080458

0130208

o 9957378

0021138
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550130208

55 9957378
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Adult_ Male-A
.002113-A
@ 013020.A
.995737-A
5.002113-A
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Adult_Female-A

e

FIGURE 13. Cross-similarity between 10 speakers in Set A and Set B. The
rectangular black box represents the similarity between real and
synthetic child speech for respective speakers in set-A and set-B. Set-A is
along the x-axis and Set-B is along the y-axis. ‘ss’ represents the synthetic
speech and ‘gt’ represents the ground truth (real) speech.

speaker similarities between real child speech and synthetic
child speech and to draw a conclusion that our synthetically
generated child speech is very close to real speech in terms
of speaker similarity with an average similarity of 81%.

D. OBJECTIVE INTELLIGIBILITY EVALUATION USING A
PRETRAINED ASR SYSTEM

A pretrained wav2vec2 model is used to provide verification
on synthetic utterances. A comparison of the speech tran-
scription between real and synthetic child voices is presented.
Child speech recognition is a challenging task of its own. The
ASR on child speech is a part of our future work. Our intent
to use this model for this paper is based on the popularity of
the model, being SOTA on adult speech. A wav2vec2 model
trained on adult speech data is used to provide that compari-
son. This speech transcription was obtained for the synthetic
and real utterances mentioned in Table 8. A random set of 30
utterances for each speaker for both real and synthetic voices
are selected. The instruction for using this model is mentioned
in their Github.!!

A comparison of this model is also provided using adult
speech by selecting the equal number of adult voices from the
LibriSpeech dataset. Word Error Rate (WER) is calculated
from the output of wav2vec2 and is mentioned in Table 13.
The Flashlight'? library is used to calculate the WER using
Viterbi decoding. No external language model (LM) was
used.

From Table 13, it can be inferred that the WER for Adult
Speech (Librispeech_test_clean) is 3.43, evidently, due to the
model being trained on adult speech data, the WER for real
child speech is 15.27 and in comparison, WER for synthetic
utterances is 25.63. An ASR model was able to recognize

Hwavavec2: https://github.com/pytorch/fairseq
12Flashlight: https://github.com/flashlight/flashlight
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TABLE 13. WER on adult speech, real child speech and synthetic child
speech.

Data type # of Utterances WER
Adult Speech [LibriSpeech_test_clean] 120 3.43
Real Child Speech [From MyST] 120 15.27
Synthetic Child Speech [Based on MyST] 120 25.63

75% of the synthetic speech with a relative difference of
10 WER when compared with real child speech recognized
by the same model for the same speakers.

V. CONCLUSION AND FUTURE WORK

In this paper, a pipeline for generating synthetic child speech
in a limited training data scenario is proposed. A small
set of child speech data is created by cleaning an existing
child speech dataset and making it suitable for TTS training.
A transfer learning approach is used to train our model with
adult speech data in a pretraining setting and child speech data
as low as 19 hours for fine-tuning. MOSNet based objective
evaluation shows a high correlation between real and synthe-
sized child voices. A subjective evaluation method suitable
for synthesized child speech is also proposed and demon-
strated. Subjective MOS of synthesized voices is observed
as 3.95 for speech intelligibility, 3.89 for voice naturalness,
and 3.96 for overall voice consistency which is very close
to Natural speech MOS. These MOS values tell us about
how good the synthesized child voices are. However, voice
inconsistency for ‘End of phrase quality’ containing noise and
unintelligible information was also observed. There is scope
for improvement for these phrases. WER for synthetic child
voices using a pretrained adult speech wav2vec2 ASR model
came to be 25.63 as compared to WER of real child voices
of 15.27. Synthetic child speech samples can be viewed in
our GitHub repository.!> Multi-speaker TTS can be the key
to child speech synthesis with limited training data. Child
speakers with speech duration between 5-7 minutes in TTS
training gave 81% average cosine similarity with a synthetic
speech from the same speakers. This choice of the model
allows the TTS to learn useful speaker information which can
be leveraged to produce better quality synthetic voices even
with limited child speech.

For future work, our aim is to improve this method by
incorporating more information to our multi-speaker TTS
model such as duration predictor and energy as implemented
in FastSpeech2 [12]. The trained vocoder was also finetuned
on the TinyMyST dataset. However, there was no significant
improvement in the quality of the generated audio waveforms
and an additional noise was observed in some of the synthesis.
More child speech data would be required to achieve any
significant improvement over the quality of the vocoder. It is
also intended to implement GAN-based SOTA Vocoders such
as HiFi-GAN [19] for future experiments. More experiments
such as training a forced aligner using children’s voices is
also part of our future work. It will help to generate more
meaningful alignments for splitting the longer audio files

13 https://c3imaging.github.io/ChildTTS/
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to increase the training dataset. The information collected
from our subjective evaluation such as voice consistency in
Harvard sentences will be used to improve child speech.
This information will be used to collect better TTS-based
child speech data based on Harvard sentences to accord with
‘end of the phrase’ information loss and voice inconsistency
observed with our current results. The use of synthetically
generated child speech to improve other areas of child speech
research such as ASR and speaker recognition will also be
investigated in future work. TTS-generated child voices can
be used as a data augmentation technique for training these
models with additional data. It is also intended to use the
subjective evaluation method proposed in this paper for per-
forming all future subjective evaluations with TTS generated
child speech.
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ABSTRACT Despite recent advancements in deep learning technologies, Child Speech Recognition remains
a challenging task. Current Automatic Speech Recognition (ASR) models require substantial amounts of
annotated data for training, which is scarce. In this work, we explore using the ASR model, wav2vec2,
with different pretraining and finetuning configurations for self-supervised learning (SSL) toward improving
automatic child speech recognition. The pretrained wav2vec2 models were finetuned using different amounts
of child speech training data, adult speech data, and a combination of both, to discover the optimum amount
of data required to finetune the model for the task of child ASR. Our trained model achieves the best Word
Error Rate (WER) of 7.42 on the MyST child speech dataset, 2.91 on the PFSTAR dataset and 12.77 on
the CMU KIDS dataset using cleaned variants of each dataset. Our models outperformed the unmodified
wav2vec2 BASE 960 on child speech using as little as 10 hours of child speech data in finetuning. The
analysis of different types of training data and their effect on inference is provided by using a combination
of custom datasets in pretraining, finetuning and inference. These ‘cleaned’ datasets are provided for use by
other researchers to provide comparisons with our results.

INDEX TERMS Child speech recognition, self-supervised learning, wav2vec2, automatic speech recogni-
tion, MyST dataset, PEFSTAR dataset, CMU_kids dataset.

I. INTRODUCTION

Current deep learning-based automatic speech recognition
(ASR) models perform remarkably well on adult speech data.
However, they struggle when it comes to recognizing speech
from children. Models such as wav2vec2, Deep Speech 2,
ContextNet, and others [1], [2], [3], [4], [5], [6], [7] all
achieve impressive results on adult speech datasets such
as LibriSpeech (~1000h), TIMIT (5.4h), LISpeech (~24h),
MediaSpeech (~10h), and more. This is due in no small part
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to the vast amounts of annotated adult speech data avail-
able for training such models and the ease with which it
can be obtained. However, when it comes to child speech
recognition, State-Of-The-Art (SOTA) ASR models trained
on adult data perform quite poorly on child voice datasets.
This is due to the inherent differences between adult and
children’s voices. A child’s voice is quite different from an
adult’s voice [8], [9] in terms of pitch, linguistic and acoustic
features, ability to understand and pronounce words, high
fundamental frequency, and shorter vocal tract length.

In addition, it is a challenging task to collect and annotate
child speech data in comparison to adult speech data which
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can be acquired from various sources such as movies, news
broadcasts, audiobooks, internet, etc. Even if child speech
can be collected from such sources, providing accurate anno-
tations remains challenging. When compared to adult voice
datasets, child voice datasets are quite limited [10].

ASR is an important and useful tool for speech researchers.
It forms the basis of speech understanding [11] when
combined with advanced language models, but also finds
applications in generative models and for training improved
Text-To-Speech (TTS) models [12], [13], [14]. The interrela-
tionship between ASR and TTS is further described in [15].
As our underlying motivation is related to TTS models and
their finetuning, we cleaned the publicly available datasets
used in this research to provide improved annotations for TTS
models.

A. RELATED WORKS

In the past few years, there have been many different
approaches to improving the performance of automatic child
speech recognition systems [16]. Most of these approaches
consist of various data augmentation techniques for increas-
ing the amount of usable training data. Text-to-Speech based
data augmentations as introduced by [14] and [17], where
ASR models are finetuned using synthetic data, have not
shown significant increases in the accuracy of child ASR.
Generative Adversarial Network (GAN) based augmenta-
tion [18], [19], [20] has also been explored to increase the
amount of labeled data with acoustic attributes like those
of child speech. Some of the other popular augmentation
approaches include Vocal Tract Length Perturbation [21],
Fundamental frequency feature normalization [22], out-of-
domain data augmentation using Stochastic Feature Mapping
(SFM) [23], and data processing-based augmentations [24]
such as Speed Perturbation, Pitch Perturbation, Tempo Per-
turbation, Volume Perturbation, Reverberation Perturbation,
and Spectral Perturbation. Spectrogram Augmentation also
seems promising for improving the performance of ASR sys-
tems [25], [26]. Each of these methods shows improvements
in child ASR accuracy, however, they still require correspond-
ing labeled annotations to speech data.

Another recent trend is the use of transfer learning
approaches for improving the recognition in child ASR for
features adaptability from adult to child speech. The authors
in [27] perform extensive analysis to understand the effect of
the amount of adaptation data, different Deep Neural Network
(DNN) transfer learning configurations, and their impact on
different age groups for improving child ASR. In [28], the
authors explored the use of a two-step training strategy, which
involves multilingual pretraining followed by transfer learn-
ing, for improving the performance of ASR systems on child
speech.

Each of these methods show some improvements in child
ASR accuracy, however, they still require corresponding
labeled annotations to speech. A recent review of child
ASRs [21] determined that most of these SOTA methods are
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supervised learning approaches. The authors in [29] show
the performance of various supervised learning approaches
for ASR in child speech. They compared the performance
of end-to-end ASR systems with that of Deep Neural
Network-Hidden Markov Model (DNN-HMM) hybrid sys-
tems. Another paper [30] studied the performance of Factored
Time Delay Neural Networks (TDNN-F) with traditional and
SOTA systems for ASR of child speech. These supervised
approaches rely on labeled child speech data during training
for the task of ASR.

As there is a distinct lack of labeled child speech data
compared to adult, approaches that utilize unsupervised [31]
and self-supervised learning [1] were explored for this paper.
Therefore, the goal of this work is to present a method
to incorporate unlabeled child speech data into the training
procedure of a typical ASR model while also making use
of abundant, labelled, and unlabeled adult speech data to
improve the overall accuracy of ASR models on child speech.

B. SELF-SUPERVISED LEARNING FOR CHILD ASR
Self-supervised learning (SSL) has emerged as a paradigm to
learn general data representations from substantial amounts
of unlabeled examples allowing one to then fine-tune models
on small amounts of labeled data. The use of SSL for child
ASR was first seen at Interspeech2021, where a model using
SSL [32] received first place for non-native child speech chal-
lenge. A similar use case [24] was also presented in the SLT
2021 children speech recognition challenge [33]. Another
approach is used in [34], where the author uses a bidirectional
unsupervised model pretraining with child speech ASR. After
reviewing various approaches to SSL, wav2vec2 [1] was
chosen for this paper. Wav2vec2 shows that using SSL for the
task of ASR provides improvements over SOTA supervised
learning approaches.

At the time of working on this paper, many applications
of the wav2vec2 model for child ASR were observed. The
authors in [35] propose the use of a transformer model
pretrained on adult speech to achieve SOTA results on chil-
dren’s dataset. Reference [36] a comparison between dif-
ferent SSL approaches for child speech recognition tasks.
In [37], authors proposed a Domain Responsible Adaptation
and Fine-Tuning (DRAFT) framework to address the domain
shift between adult speech used for pretraining and child
speech used for finetuning. They use wav2vec2 along with
other SSL methods to examine the cross-domain transfer
between different children’s datasets.

This paper explores various pretraining and finetuning
configurations with different combinations of adult and
child speech datasets using wav2vec?2 speech representations.
Three child speech datasets were used in this study. These
datasets were cleaned and preprocessed to make them usable
for ASR. We also report the best results on different child
speech validation. The ideal data requirement for pretraining
and finetuning in a low-data scenario was also explored in
this paper by observing the relation/pattern of performance
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FIGURE 1. Pretraining and finetuning steps in Wav2vec2 (from [1]).

in different datasets used. The rest of this paper is organized
as follows: Section II describes the model architecture. Sec-
tion III introduces the datasets used for this paper. Section IV
includes the codebase and experiments. Section V describes
the results. Conclusions are presented in Section VI.

Il. TRAINING METHODOLOGY FOR SSL

The wav2vec2 model [1] is used to extract speech repre-
sentations from raw audio files in a self-supervised learning
scenario and use these representations for ASR-specific tasks.
Wav2vec? is used in this paper as it can achieve SOTA results
when trained on a large amount of unlabeled speech data and
finetuned on labeled data as small as 10 minutes. This is ideal
for our task, as it is much easier to obtain significant amounts
of unlabeled child speech data than gather accurately labeled
data.

As it is a two-step training method (See Figure 1), the
first step includes a pretraining step in which the model is
trained with a large amount of unlabeled data. The second
step includes finetuning on labeled data using Connection-
ist Temporal Classification (CTC) loss [38] for downstream
ASR tasks. As the model learns SSL speech representation
in pretraining, it can be trained using large quantities of
unlabeled speech data and can be finetuned with only a small
amount of labeled data. This way, the problem of scarcity of
child speech is solved as we can train the ‘pretraining’ model
with a combination of unlabeled speech data and it can also
be used to learn speech representations from adult speech
datasets making use of the abundant adult speech data.

A. PRETRAINING

The pretraining stage of the wav2vec2 model consists of a
feature encoder, context network, and quantization module.
The CNN feature extractor takes the raw audio waveform as
input and passes it through a series of 1D convolutional layers
to extract high-level representations from the waveform. The
output of the feature extractor is a sequence of feature vectors
that represent the input waveform. The context network is
a transformer-based encoder which takes this sequence of
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feature vectors and processes them using a stack of trans-
former layers. The transformer layers in wav2vec 2.0 use
a self-attention mechanism allowing the model to capture
long-range dependencies in the input data. The quantiza-
tion module consists of a codebook of fixed vectors, where
each input feature vector is assigned to the closest code-
book vector. Gumbel softmax function [39] is used to choose
the quantized representation from multiple codebooks. After
quantization, the discrete symbols are passed through a trans-
former encoder, which learns to encode the sequence of
symbols into a fixed-length representation that can be used
for downstream tasks such as speech recognition. Since the
process involves mapping continuous values to discrete val-
ues, it makes the model to be more efficient for training and
inference.

The contrastive loss function in Wav2vec2 is applied after
the quantization is performed. It is used to train the model
to produce embeddings that capture useful features of speech
signals. This is followed by a diversity loss which encourages
similar feature vectors to be closer together and dissimi-
lar feature vectors to be farther apart. By minimizing these
losses, Wav2vec2 can learn to produce embeddings that are
effective for downstream speech recognition tasks.

Experiments’ configurations are provided as the BASE
and LARGE models. The configurations differ in transformer
block size but use the same size for the encoder. The feature
encoder contains seven blocks with each block having strides
of (5,2,2,2,2,2,2) and kernel widths of (10,3,3,3,3,2,2) and
output temporal convolution of 512 channels. The context
network of the BASE model contains 12 transformer blocks,
each block with a 512-dim model, 8 attention heads, and
a 2048-dim feed-forward inner layer, while the LARGE
model contains 24 transformer blocks with model dimensions
1024, inner dimensions 4096, and 16 attention heads. We use
4 NVIDIA Tesla V100 GPUs to pretrain the model. Model
pretraining was optimized using ADAM [40]. During the
first 8% of updates, the learning rate warms up to a peak of
5 x 10 ~* for BASE and 3 x 10~* for LARGE, and then
it linearly decays. We use both BASE and LARGE models
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according to dataset size used for pretraining. BASE models
contain 93M parameters and LARGE models contain 317M
parameters.

B. FINETUNING

For finetuning, 29 target letters were used (from the Lib-
rispeech dataset) as provided by the authors in wav2vec2 [1].
Models are optimized by minimizing CTC loss [38] for ASR
task. A modified version of SpecAugment [25] is applied as
masking to timestamps and channels to reduce the overfitting
and improve the recognition robustness. We fine-tune on
one V100 GPU. For the first 1000 updates, only the final
output classifier was trained, after which the Transformer
block was also trained. The feature encoder was frozen
during finetuning training. We also use different finetuning
configurations depending on the size of finetuning datasets.
The hyperparameters are kept the same as provided by the
wav2vec2 authors [1]. The learning rate changes accord-
ing to the dataset size as documented by the authors of
wav2vec2 [1].

As the goal of this study is to evaluate the performance
of self-supervised speech representations, it was decided not
to incorporate a language model in this research. Addition-
ally, previous research has shown that the best results for
children’s ASR systems were achieved without the use of an
external language model [29]. Language model adaptation
for child speech is also an unexplored research area. Child
speech would require a specialized trained language model
for best results. As there isn’t any definitive publicly available
language model for child speech, we consider this as a part of
the future research topic.

1Il. DATASET DESCRIPTION AND USAGE

The datasets are divided according to their usage. The child
speech data used in this paper include MyST Corpus [41],
CMU_Kids [42] and PF-STAR [43]. Adult Speech datasets
include Librilight [44], LibriTTS [45], and LibriSpeech [46].

A. DATASET DESCRIPTION
Below we provide a description of the datasets used in this
paper:

1) LIBRISPEECH [46]

Librispeech is an adult speech dataset with approximately
1000 hours of recorded audio with a sampling rate of 16Khz.
The data is derived from read audiobooks from the LibriVox
project. The data is carefully segmented, aligned, and used
popularly in speech research.

2) LIBRILIGHT [44]

Librilight is an adult speech dataset used as a benchmark for
training speech recognition systems with limited or no super-
vision. It contains 60,000 hours of unlabeled adult speech
extracted from audiobooks. It was mentioned in the wav2vec2
paper [1] and used by the authors.

VOLUME 11, 2023

3) LibriTTS [45]

The LibriTTS dataset is a large-scale dataset for training TTS
models and is a subset of the Librispeech dataset. It consists
of approximately 560 hours of high-quality audio and text
transcriptions from audiobooks. This dataset is used here
for inference over adult speech as it is a clean and noise-
free dataset. The ‘dev-clean’ segment of the LibriTTS dataset
which contains over 8.9 hours of clean adult speech. It is also
widely used as a baseline in the validation of ASR and TTS
experiments.

4) MY SCIENCE TUTOR (MySt) CHILD SPEECH [41]

The MyST (My Science Tutor) Children’s Speech Corpus
consists of 393 hours of American English children’s speech
with a total of 228,874 utterances. The speech was collected
from 1371 third, fourth and fifth-grade students. 45% of the
utterances have been transcribed at the word level amount-
ing to 197 hours. This dataset is used in this paper as it’s
the largest open-source corpus of child speech available for
research use.

5) PF-STAR CORPUS OF BRITISH ENGLISH CHILD

SPEECH [43]

This corpus contains British English child speech from
158 children aged 4 to 14 years. The recordings are divided
into a training set (7.5 hours), an evaluation set (1 hour)
and a test set (5.6 hours). The corpus was collected at three
locations: a university laboratory and two primary schools.
It contains both read and spontaneous child speech with
transcriptions.

6) CMU KIDS [42]

CMU KIDS Corpus contains read-aloud sentences by chil-
dren. It was created to provide training data for the SPHINX II
automatic speech recognizer at Carnegie Mellon University.
It contains 9 hours of American English child speech. The
dataset contains 24 male and 52 female speakers having a
total of 5180 utterances.

B. DATASET CLEANING AND PROCESSING

All speech data was converted into a 16-bit mono channel
with a 16Khz sampling rate, wherever required. All the tran-
scriptions were cleaned and normalized to remove abbrevi-
ations, punctuations, whitespaces, etc. and all the characters
were changed to uppercase. All the non-linguistic annotation
symbols (in child speech datasets) such as “<unk>, sil,
hmm, <breath>, <noise>, <indiscernible>, [ze-], [cham-],
[***ision], etc.” were removed and only alphanumeric char-
acters were retained in the transcript. This was done for all the
labeled data used in this paper. Child datasets required further
cleaning and pre-processing as follows:

1) MYST CLEANUP
We use the transcribed portion of MyST dataset contain-
ing over 197 hours of speech data presented in .trn file
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format. The MyST dataset contained a lot of noisy and
non-meaningful sentences such as:

<silence> I'm i don’t know <noise> actually
<whisper> sending go back (*)

<whisper> what’s this one <side_speech> it’s an
give me that <indiscernible> a circuit is a pathway
<laugh> yeah yeah

O O O o o

The content between ‘<’ and ‘>’ tags were removed from
all the transcriptions along with the tags themselves. All the
cleaned text files were saved in a .txt format. On further
inspection, it was observed that samples below 10 seconds
in length generally contained non-meaningful, noisy speech,
and data above 20 seconds would lead to GPU running out
of memory. Therefore, 10-20 seconds long speech samples
from transcribed MyST were selected for finetuning. A final
cleaning was performed by manually removing some of the
non-meaningful utterances by listening to audio files and
going through the transcripts, which amounted to a total of
65 hours of clean data. The data was then randomly split into
two groups having 55 hours of data for training and 10 hours
for testing as can be seen in Table 1.

<2xml version="1.8" encoding="IS0-8859-1"2>
<IDOCTYPE Trans SYSTEM "trans-13.dtd">

<Trans scribe="(unknown)" audio_filename="digits1" version="2" version date="83115">
<Episodes

<Section type="report” startTime="0" endTime="36.497">
<Turn startTime="8" endTime="36.497">

<Sync time="8"/>

sil

<Sync time="0.985"/>

five

<Sync time="1.735"/>

two

<Sync time="2.289"/>

four

<Sync time="2.852"/>

sp

<Sync time="3.445"/>

seven

<Sync time="4.898"/>

sp

<Sync time="4.258"/>

five

<Sync time="4.727"/>

nine

<Sync time="5.289"/>

sp

<Sync time="5.883"/>

one

<Sync time="6.414"/>

oh

<Event desc="error_urong_word(s)" type="noise" extent="instantaneous"/>
<Sync time="6.914"/>

one

<Sync time="7.289"/>

sil

FIGURE 2. Example of “trs’ file in the pfstar dataset. The content in this
image was segmented into ‘five two four, ‘seven, ‘five nine, and ‘one oh
one’. The image is provided to show an example of how transcripts data
were made available using “.trs’ transcriber old format.

2) PFSTAR CLEANUP

The PFSTAR corpus also contained a lot of non-meaningful
utterances and noisy data samples. The dataset comes with
“.trs’ transcription files, containing time-aligned text infor-
mation (see Figure 2). These timestamps were used to further
segment the data into small audio chunks and remove noise
from the dataset. The ‘sp’ tag from the transcription was
used to divide the long transcripts into smaller segments.
The corresponding time information was used to segment
the long audio files into smaller chunks using FFmpeg! and
Python. The audio files from the PESTAR dataset which were

1FFmpeg: https://ftmpeg.org/
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30-70 seconds long were segmented into smaller audio
chunks of 5-20 seconds in duration. This segmentation led
to 12 hours of clean, usable PFSTAR data, which was further
divided into 2 sets: PFS_10h with 10 hours of data (for train-
ing) and PFS_test with 2 hours of data (for inference). The
final audio data was saved in .wav format and transcriptions
in .txt format.

3) CMUKIDS CLEANUP
CMU_Kids dataset also contains a lot of noisy and incom-
prehensible child speech. The transcriptions are provided in
a “trn’ file format and audio files in a ‘.sph’ format. The
data was cleaned in a similar way to MyST by removing
all the unrequired tags and non-textual information from the
transcripts. For example, ‘“‘they [begin_noise] kept a few
[end_noise] butterflies in [noise]”” was converted to ‘“‘they
kept a few butterflies in”. A few more examples can be seen
below:
o [begin_noise] cages [end_noise] to lay more eggs
[noise] [sil]
-> cages to lay more eggs
o a [begin_noise] blue butterfly [end_noise] /F L R UW/
[human_noise] flew by [human_noise] [human_noise]
-> a blue butterfly flew by

The cleaned dataset contained all the audio files in ‘.wav’
format and all transcribed speech in “.txt’ format as needed
for our training. The total amount of CMU_Kids dataset
amounted to 9 hours which was used during inference only.

C. DATASET USAGE
The dataset usage is mentioned in Table 1. The ‘Usage’
column indicates whether the dataset was used for

TABLE 1. Dataset description for pretraining, finetuning and inference.

Usage Dataset Duration Type
Pretraining MyST_complete 393 hrs Child
[Unlabeled Librispeech 960 hrs Adult
data] Libri-light 60k hrs Adult
MyST_10m 10 mins Child

MyST_1h 1 hr Child

MyST_10h 10 hrs Child

MyST_55h 55 hrs Child

Finetuning PFS_10m 10 mins Child
[Labeled data] PFS_lh 1hr Child
PFS_10h 10 hrs Child

LS 10m 10 mins Adult

LS_100h 100 hrs Adult

LS_960h 960 hrs Adult

MyST _test 10 hrs Child

Inference PFS_test 2 hrs Child
[Labeled data] CMU_Kids 9 hrs Child
LibriTTS ‘dev-clean’ 8.9 hrs Adult
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TABLE 2. Group-A: WER for different pretraining (Adult speech datasets) and finetuning (Adult speech dataset) experiments on the MYST, PF-STAR, CMU

KIDS and LIBRITTS ‘dev-clean’ datasets.

Group Model Pretraining Model Pretraining Finetuning WER WER WER WER
ID Configuration dataset dataset MyST test PFS_test CMU_KIDS dev_clean

1 LS 10m 31.48 30.05 33.38 15.90

GROUP 2 BASE Librispeech LS_100h 17.82 15.96 18.73 4.16
A 3 LS_960h 15.41 11.20 16.33 3.40

- Average (Group — A, BASE) 21.57 19.07 22.81 7.82

4 LS_10m 26.47 27.14 29.37 15.35

5 LARGE Librilight LS _100h 13.15 11.63 16.18 3.79

6 LS _960h 12.50 8.56 14.85 3.28

- Average (Group — A, LARGE) 17.37 15.78 20.13 7.47

pretraining, finetuning, or inference. The ‘Type’ column
specifies whether the dataset consists of child or adult speech.
Dataset name is mentioned in ‘Dataset’ column while amount
(in hours/minutes) is mentioned under ‘Duration’ column.
Pretraining datasets only consists of audio files and doesn’t
require any transcript/labelled data during training. Finetun-
ing data consists of audio files along with labelled transcripts.
The size of the finetuning datasets was chosen as instructed
in wav2vec?2 [1], and to keep it consistent with their method-
ology. A similar distribution was maintained for finetuning
with child speech datasets (wherever possible). The data was
segmented randomly for creating various finetuning subsets.

IV. CODEBASE AND EXPERIMENTS

A. CODEBASE AND HYPERPARAMETERS

The wav2vec2 implementation provided by the fairseq?
framework is used for our experiments. Hyperparameters
were kept the same for both BASE and LARGE pretraining
configurations as provided by the wav2vec2 authors. Fine-
tuning configurations were also kept consistent with the fine-
tuning dataset size used. Data cleaning and data processing
scripts were created using FFmpeg and Python-based tools
such as pydub and scipy. All the training checkpoints are
made available on our GitHub page’ and can be used directly
with the model implementation from fairseq. See note* for
more information on data cleaning scripts and dataset avail-
ability.

B. EXPERIMENTS

Experiments were divided into five groups, Group-A, B,
C, D and E. ASR performance is measured in terms of
Word Error Rate (WER) on different adult and child speech
datasets. Child speech datasets used in inference include
unseen MyST_test, PFS_test and CMU_Kids, and adult
speech dataset include LibriTTS ‘dev-clean’. These datasets

2https://github.com/pytorch/fairseq/tree/main/examplc:s/wavlvec

3https://github.com/CBImaging/childASR_W2v2

4Note: We only make the basic data cleaning scripts available in the
GitHub. Researchers trying to replicate our work can email us and get access
to other research material. For access to respectively cleaner versions of
datasets used in this paper, researchers can buy their own license for the
original datasets (where required), and on providing proof of that license,
can get access to our ‘clean’ versions.
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are common for all groups during inference tests. All the
groups of experiments (except Group-C) use two model con-
figurations, namely BASE and LARGE. The BASE config-
uration includes 960 hours of Librispeech pretraining data
and the LARGE configuration includes 60k hours of Libri-
light data, which is 60 times as much pretraining data as in
the BASE configuration. This enables an assessment of the
importance of the original training data size for the wav2vec2
model.

For Group-A (Table 2), the finetuned checkpoints provided
by the wav2vec2 repository were used for inference. Each
of the BASE and LARGE configurations were finetuned
with 10 minutes, 100 hours, and 960 hours of Librispeech.
For Group-B (Table 3), the pretrained model is finetuned
with 10 minutes, 1 hour, 10 hours, and 55 hours of MyST
child speech data. In Group-C (Table 3), the Librispeech
and MyST datasets having 960 hours of adult speech and
393 hours of child speech data, respectively, are used for pre-
training. The model is then finetuned over different amounts
of the MyST dataset (similar to Group-B). We only use BASE
configuration for this experiment. Group-D (Table 4) uses
PFSTAR dataset for finetuning instead of the MyST dataset,
and both BASE and LARGE configuration are finetuned
with 10 minutes, 1 hour and 10 hours of PFSTAR child
speech dataset. Group-E (Table 5) uses a mix of differ-
ent datasets in the finetuning. A mix of the MyST_55h,
PFS_10h, and LS_960 datasets was used. Finetuning
mix included LS_960h4+MyST_55h, LS_960h+4-PFS_10h,
MyST_55h+PFS_10h and LS_960h+MyST_55h+4 PFS_10h.
These experiments were performed to see the cross-
domain correlation in WER across different finetuning
datasets.

Note that we did not train any models from scratch with
child speech data alone as there is not sufficient publicly
available child speech data to learn any meaningful speech
representations from child speech alone. This is discussed in
more detail in section V.

V. RESULTS AND DISCUSSION
A. MAIN RESULTS FROM THE GROUP EXPERIMENTS

Results from group experiments are presented in
Tables — 2, 3, 4, and 5, with lowest WERSs highlighted in bold.
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TABLE 3. Group-B and Group-C: WER for different pretraining (adult and child speech datasets) and finetuning (MyST child speech dataset) combinations

on the MYST, PF-STAR, CMU KIDS and LIBRITTS ‘dev-clean’ datasets.

Group Model Pretraining Model Pretraining Finetuning WER WER WER WER
ID Configuration dataset dataset MyST test PFS_test CMU_KIDS dev_clean
7 MyST_10m 28.84 41.34 34.18 21.45
8 BASE Librispeech MyST_1h 18.75 31.84 23.13 13.91
9 MyST_10h 13.46 28.68 19.59 10.94
10 MyST_55h 8.13 14.77 16.47 7.72
GROUP- - Average (Group — B, BASE) 17.29 29.16 23.34 13.51
B 11 MyST_10m 33.01 44.36 39.91 46.45
12 LARGE o MyST_1h 14.91 26.21 18.74 11.59
13 Librilight MyST_10h 12.92 25.05 17.72 10.04
14 MyST_55h 7.51 12.46 15.25 6.43
- Average (Group — B, LARGE) 17.08 27.02 2291 18.62
15 MyST_10m 29.16 45.71 37.56 35.39
16 Librispeech MyST_1h 21.89 38.53 29.03 20.45
GR%UP‘ 17 BASE MyST_Complete 0 1o 16.18 32.95 25.06 16.83
18 MyST_55h 10.34 25.47 23.15 13.48
- Average (Group — C, BASE) 19.39 35.67 28.7 21.53

TABLE 4. Group-D: WER for different pretraining (adult speech datasets) and finetuning (PFstar child speech dataset) combinations on the MYST,

PF-STAR, CMU KIDS and LIBRITTS ‘dev-clean’ datasets.

Group Model Pretraining Model Pretraining Finetuning WER WER WER WER
ID Configuration dataset dataset MyST test PFS_test CMU_KIDS dev_clean

19 PFS_10m 3591 16.43 33.53 30.43

20 BASE Librispeech PFS 1h 33.52 7.36 29.55 16.61

21 PFS 10h 31.86 3.48 27.49 13.95

GROUP- = Average (Group — D, BASE) 33.76 9.09 30.19 20.33

D 22 PFS_10m 37.10 16.78 35.13 23.85

23 LARGE Librilight PES_1h 30.81 14.19 28.54 21.89

24 PFS_10h 27.17 3.50 21.35 11.60

o Average (Group — D, LARGE) 31.69 11.49 28.34 19.11

TABLE 5. Group-E: WER for different pretraining (adult datasets) and finetuning (adult and child speech datasets) combinations on the MYST, PF-STAR,

CMU KIDS and LIBRITTS ‘dev-clean’ datasets.

G Model Pr;f[”(;“;“g Pretraining Finetunine dataset WER WER WER WER
roup ID odel dataset tnetuning catase MyST_test | PFS_test CMUKIDS dev_clean
Configuration - - -
25 LS 960h, MyST 55h 8.18 12.17 14.12 1.24
26 BASE Libri N LS_960h, PFS_10h 15.42 3.74 15.31 141
27 forispeec MyST_55h, PFS_10h 7.94 2.91 15.97 7.64
28 LS_960h, MyST_55h, PFS_10h 8.13 3.12 13.76 1.20
GROUP-
B - Average (Group — E, BASE) 9.91 5.48 14.79 2.87
29 LS_960h, MyST_55h 8.06 931 13.20 1.34
30 o LS 960h, PFS_10h 13.18 3.17 13.19 1.32
3 LARGE Librilight MyST_55h, PFS_10h 7.42 2.99 14.18 5.79
32 LS 960h, MyST 55h, PFS_10h 8.17 3.33 12.77 1.40
- Average (Group — E, LARGE) 9.2 4.7 13.33 2.4

1) GROUP-A (TABLE-2)

In this group, adult datasets are used in both pretraining
and finetuning. All models show a pattern of decreasing
WER with an increase in the size of the finetuning dataset.
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It can also be observed that there is not a large differ-
ence in WER between BASE and LARGE models even
though the LARGE model uses 60 times more training
data.
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2) GROUP-B (TABLE-3)

All the models in Group-B, finetuned with different amounts
of MyST data, attained lower WERs on the child speech
in comparison with Group-A experiments. A similar trend
of decreasing WER can be observed with an increase in
finetuning data.

3) GROUP-C (TABLE-3)

Group-C experiments were designed similar to Group-B (see
Table-3). The objective was to investigate whether adding
child speech dataset in the pretraining have any impact on the
model performance. Comparing to the BASE models from
Group-B, the WERs on all test sets increased in Group-C.
Therefore, using child speech in pretraining was not consid-
ered for Group-D and Group-E experiments.

4) GROUP-D (TABLE-4)

In this group, the PFSTAR dataset was used for fine-tuning.
The model’s performance also improves as the size of the
finetuning dataset increases. The best results, as might be
expected, are on PFS_test while results on the other test
datasets are less impressive.

5) GROUP-E (TABLE-5)

Group-E used LS_960h, PFS_10h and MyST_55h in various
finetuning combinations as these datasets gave the best WER
in previous finetuning experiments. Group-E models outper-
formed all the previous models and gave the best WER for all
the inference datasets.

B. DISCUSSION OF RESULTS

Group-A (Table 2) results provide a baseline where only
adult speech data is used for pretraining and finetuning. The
relative improvements due to finetuning with adult speech
are similar across all of the child test datasets, indicating
that large adult speech datasets provide similar levels of
improvement on different child speech validation. We can
draw three additional conclusions. Firstly, there is less than a
3% variation in WER between BASE and LARGE wav2vec2
models across all the test datasets, so the LARGE model is
only useful where optimal performance is needed, and BASE
models are ideal for low resources scenario. Secondly, the
improvement between finetuning with 10 minutes of adult
speech data and 100 hours is much more significant than
the improvement between 100 hours and 960 hours. There
is only a 3% average WER difference between LS_100h and
LS_960h finetuning, suggesting 100 hours of adult speech is
ideal for finetuning.

Next, after introducing various amounts of child speech
data for fine-tuning in Group-B (Table 3), it is noted that
smaller amounts of child speech data result in better improve-
ments in WER. It is clear that as little as 1 hour of child speech
can have similar improvements to 100 hours of adult speech.
Similarly, 10 hours of child speech shows similar improve-
ments as 960 hours of adult speech. However, we also note
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a significant domain mismatch across the test datasets as the
improvements on PFS_test and CMU_Kids are significantly
weaker than for MyST_test. An overarching conclusion here
might be that 1 hour of child speech is equivalent to 100 hours
of adult speech where there is strong domain alignment
between the finetuning and test speech. Lastly, using LARGE
model for finetuning with only a small amount of child speech
(e.g., 10 mins) may be detrimental due to domain mismatch
between pretraining and finetuning datasets. Again, there is
a relatively small performance improvement between BASE
and LARGE models.

The Group-C (Table 3) experiments add the MyST_
Complete dataset to the pretraining. Performance is poorer
than with adult speech only, highlighting the limitations
of pretraining data with the noisy and non-linguistic child
speech in the MyST_Complete corpus. Further investigation
is needed to understand this impact of child speech data on
the pretraining; however, it will require a much cleaner and
larger child speech dataset.

Group-D (Table 4) experiments are equivalent to Group-
B (Table 3) but use the PFSTAR dataset for fine-tuning.
As this dataset is smaller than MyST, only 10 minutes, 1 hour
and 10 hours of speech can be used for fine-tuning. The
key takeaway here is that PFS_test results improve even
more significantly than MyST_test in Group-B, but the other
child speech test datasets barely show any improvement.
Clearly there is a significant domain mismatch between
PFSTAR dataset with British English dialect and the two
other child-speech datasets with American English dialect.
PFSTAR was also recorded in a much cleaner environ-
ment. This shows that properties like dialect, accent and
acoustic characteristics can impact the performance of the
ASR model. Interestingly, MyST and PFSTAR finetuning
(from Group B and D) shows similar WER on LibriTTS
dev-clean implying that child speech datasets with distinct
properties perform similarly when used for adult speech
recognition.

Finally, for the Group-E experiments (Table 5), where
a mix of adult and child datasets are used, we find that
finetuning on the two child speech datasets, MyST_55h
and PFS_10h gives the best results with WER rates of
7.91 and 2.94 on the respective tests datasets, MyST_test
and PFS_test. Performance for CMU_Kids is significantly
weaker at 15.97. Clearly, when the finetuning data has a
good domain match with the tests data then SOTA WER
rates can be achieved through finetuning with approximately
65 hours of child speech data. The BASE and LARGE config-
urations in Group-E show an absolute difference of 0.84 WER
suggesting that performance is similar for both configura-
tions when cross-domain datasets combinations are used in
finetuning.

Interestingly, using smaller amounts of child speech can
provide significant improvements in WER accuracy as com-
pared with large amount of adult speech. This study pro-
vides a baseline for future studies. While the results of
this study provide a comprehensive analysis of different
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TABLE 6. Previous SOTA results on the MYST, PF-STAR, and CMU_KIDS datasets.

SOTA Papers Method Type Training Inference WER WER WER
Data (hrs) data (hrs) MyST PFSTAR CMU_Kids

TDNN-F + Augmentation [30] Supervised 6.34 2.76 - - 16.01
Hybrid HMM-DNN Transfer Learning [28] Supervised 6.26 2.45 - - 19.33
DRAFT [37]:

o  WAV2VEC2 Self-Supervised 197 13 16.70

o  HuBERT 16.53
Transformer + CTC + Greedy [29] Supervised 197 13 16.01 -
W2V2 + source-filter warping + LM [35] Self-Supervised 11.2 2.5 4.86

finetuning techniques for child ASR, additional conclusions
can be drawn by comparing different experiments.

C. THIS WORK IN THE CONTEXT OF PREVIOUS CHILD
SPEECH ASR APPROACHES

As commented in the Introduction, the publicly avail-
able child speech datasets are small in comparison to
well-established adult speech datasets and audio quality is
poor in comparison. Further, if the full datasets are used to
build randomized test datasets, then many of the data samples
will be of very variable quality. Thus, previous authors have
adopted various approaches to clean and utilize the data but
due to lack of standardized approach, it would not be fair to
make any direct comparisons.

Our best results using the SSL approach show potential
for significant improvement over the previously reported
results on the same dataset as shown in Table 6. Our trained
models achieved the best WER of 7.42 on the MyST_test
dataset, 2.91 on the PFSTAR, PFS_test dataset (reaching
human level performance) and 12.77 on the CMU_Kids
dataset, as compared to the previously reported results
from [28], [29], [30], [35], and [37]. Our detailed explana-
tions of how the test datasets were ‘cleaned’ for this work
should further provide researchers with a useful basis for
future comparisons.

VI. CONCLUSION

In this work, the wav2vec2 self-supervised training approach
is adapted with different mixes of pretraining and fine-
tuning datasets to provide a methodology to improve the
accuracy of child speech recognition. A combination of
adult and child speech datasets is used to determine the
data requirements for improving child speech recognition.
Experiments were designed to evaluate the relative perfor-
mance on the in-domain MyST and PFSTAR datasets, the
out-of-domain CMUKIDS dataset while using the LibriTTS
dev-clean dataset as a reference adult speech dataset. The
best results were obtained where the model was pretrained on
adult data and fine-tuned on a combinations of child speech
datasets. The best WER rates (7.42 on MyST_test, 2.91 on
PFS_test, 12.77 on CMU_Kids) are comparable with the best
SOTA results available currently in the literature.
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A model pretrained with adult speech data can best learn
the speech features as compared to a model including both
adult and child speech in pretraining. In particular, adding a
low-quality dataset such as the MyST child speech dataset in
pretraining reduced the performance of the ASR model across
all test datasets. Significant domain variations were also evi-
dent between the MyST, CMU_Kids and PFSTAR datasets
with the latter being of notably better quality. Qualitatively
we can say that MyST and CMU_Kids are more closely
aligned than the PF-Star dataset. When a cross-domain mix
of child speech is used for fine-tuning (e.g., model 27 or
model 31) then the optimal results are achieved. For a model
finetuned with single or multiple child/adult speech data,
WER increases over the dataset with similar distribution as
finetuning dataset.

The BASE configuration of wav2vec2, which is pretrained
with 60 times less data than the LARGE configuration is
effective for a low-data scenario. In fact, the improvements
achieved through using the LARGE configuration were typ-
ically only a few percent and hardly seem to justify the
large increase in computational resources needed to train.
As for finetuning, we can say that 100 hours of adult
speech finetuning data offer a practical trade-off between
computational effort and ASR accuracy. Finetuning with
as little as 10 hours of child speech data provided better
improvement over models finetuned with 960 hours of adult
speech. Optimal results are achieved using in the order of
65 hours of cross-domain child speech (a mix of MyST
and PFSTAR).

For future work, these models can be used to transcribe
additional child speech data from the unlabeled MyST dataset
and a range of additional unlabeled datasets. It would also
be interesting to investigate the potential of generative data
augmentation models [47] to provide additional synthetic
child speech samples and a wider variety of child speech for
pretraining and finetuning experiments.
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Abstract

Automatic Speech Recognition (ASR) systems often struggle
with transcribing child speech due to the lack of large child
speech datasets required to accurately train child-friendly ASR
models. However, there are huge amounts of annotated adult
speech datasets which were used to create multilingual ASR
models, such as Whisper. Our work aims to explore whether
such models can be adapted to child speech to improve ASR for
children. In addition, we compare Whisper child-adaptations
with finetuned self-supervised models, such as wav2vec2. We
demonstrate that finetuning Whisper on child speech yields
significant improvements in ASR performance on child speech,
compared to non-finetuned Whisper models. Additionally,
utilizing self-supervised Wav2vec2 models that have been
finetuned on child speech outperforms Whisper finetuning.

Index Terms: Child Speech Recognition, Automatic Speech
Recognition, Whisper model, MyST, PF-STAR, CMU Kids

1. Introduction

Automatic Speech Recognition (ASR) faces several challenges,
including limited training data, untranscribed training data and
performance degradation on non-native speech and children's
speech. Recent research in ASR tackles some of these
problems, especially for adult speech, and therefore ASR on
adult speech has reached human-level performance [1]-[4].
However, for child speech, progress has been slow and ASR
models still perform poorly. Unlike adult speech data, high
quality child speech datasets required for training are limited
and challenging to collect and annotate (see the survey in [5]).
Additionally, there are inherent differences between adult and
child voices in terms of pitch, linguistic and acoustic features,
and pronunciation ability [6], [7]. The shorter vocal tract length
and higher fundamental frequency [8] of children's voices also
add to the complexity of recognizing child speech.

Recent development in self-supervised learning has delivered
improvements for child speech. The development of
unsupervised pretraining techniques, such as Wav2vec2 [3], has
greatly contributed to the progress of child ASR [9]-[11].
However, a finetuning stage on a labeled dataset is required for
ASR, which limits their usefulness since finetuning can find
patterns within a training dataset and boost performance on the
similar datasets but may not generalize to other dataset
distributions. The aim of speech recognition systems is to
operate with high reliability in diverse environments, without
the need for finetuning for the data/deployment distribution of
each specific usecase. We reviewed various supervised learning
approaches [12]-[14] in child ASR. It was observed that most

of these studies included transfer learning approaches from
adult to child speech [9], [12], [15], data augmentation methods
[16]-[20], or weakly supervised training [14], [15], [21].
Recent findings in supervised learning approaches [22], [23]
has demonstrated that pretraining speech recognition models on
multiple datasets/domains using supervised methods can
enhance the models' robustness and generalization performance
on unseen datasets.

In this work, we use a recent State-of-the-Art (SOTA)
supervised ASR model, called Whisper. The authors of
Whisper [4] have successfully bridged the gap in weakly
supervised speech recognition by using large amounts of
labeled audio data. They have also broadened the scope of
weakly supervised pre-training beyond English-only speech
recognition to be multilingual and multitask, showing great
performance on different multilingual adult speech datasets [4].
These findings suggest that the scaling of weakly supervised
pretraining has been undervalued for speech recognition. We
use these Whisper models to provide an analysis of supervised
training paradigms on different child speech datasets. We also
finetune these models using different combinations of child
speech datasets to see the subsequent speech recognition
performance on different seen and unseen distributions of child
speech datasets [24]-[26]. Lastly, we provide a comparative
analysis of Whisper results with previously benchmarked
results that used wav2vec2 self-supervised learning approach
trained on the same distribution of datasets [27]. We use a
similar approach as used by the authors of [28] for providing a
comparison between Whisper and wav2vec? results.

Since Whisper is trained with an order of magnitude more data
than wav2vec2 (680k vs 60k) and contains a lot of multilingual
and low resource languages during training, we believe that this
multilingual data can be utilized to provide child speech
recognition tasks via finetuning. Our goal is to evaluate the
efficacy of these two methodologies in child speech analysis
and determine their potential for enhancing child ASR
technology and developing educational tools for children.

2. Model Description

2.1. Whisper [4]

The Whisper approach focuses on broadening the scope of
weakly supervised pre-training beyond English-only speech
recognition to be both multilingual and multitask. Of the
680,000 hours of labelled audio used by Whisper, 117,000
hours cover 96 other languages. The dataset also includes
125,000 hours of X—en translation data. The model processes
audio through a system of transformer blocks with residual
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connections and final layer normalization. The model uses a
multitask format to perform the entire speech processing
pipeline, including transcription, translation, voice activity
detection, alignment, and language identification. The model is
based on an encoder-decoder Transformer, which is fed 80-
channel log-Mel spectrograms. The encoder is formed by two
convolutional layers with a kernel size of 3, followed by a
sinusoidal positional encoding, and a stacked set of
Transformer blocks. The decoder uses the learned positional
embeddings and the same number of Transformer blocks as the
encoder. The Whisper architecture is explained in detail in [4].

2.2. Wav2vec? [3]

Wav2vec 2.0 is a speech recognition model and training
approach that is based on a self-supervised learning of speech
representations using a two-stage architecture for pretraining
and finetuning. The architecture of wav2vec 2.0 can be divided
into three main parts: a CNN feature extractor, a transformer-
based encoder, and a quantization module (see [3] for more
details) . In the pretraining phase, the model is trained on a large
dataset of unlabelled speech data. The model learns meaningful
representations by capturing the temporal and spectral
characteristics of speech using a masked contrastive loss
function. In the finetuning phase, the pretrained model is
finetuned on a smaller labeled dataset for a specific downstream
task. The last layer of the pretrained model is replaced with a
task-specific feed-forward layer and the entire model is
optimized by minimizing the CTC loss [29] for ASR.

2.3. Training details

All models were trained using A6000 GPUs with 48GB of
available memory. We provide the architectural parameters
details in Table 1 for both Whisper and wav2vec2 models used
in this work. Whisper models are trained with a large number
of parameters and therefore should provide better
generalization towards unseen datasets compared to wav2vec2.

Table 1: Architecture parameters for Whisper [4] and
wav2vec?2 [3] models.

Models Layers Width Heads Learning Para-
Rate meters
Whisper Models:
Tiny 4 384 6 1.5x10% | 39M
Base 6 512 8 1x10° 72M
Small 12 768 12 5x10* 244M
Medium 24 1024 16 25x10* | 769M
Large 32 1280 20 1.75x10* | 1550M
Wav2vec2 Models:
Base 12 768 8 5x 10+ 95M
Large 24 1024 16 3x10* 317M

For finetuning, we use a learning rate of 1 x 10 for all Whisper
finetuning experiments. Wav2vec2-base was finetuned with a
learning rate of 1 x 10, while wav2vec2-large was finetuned
with a learning rate of 2.5 x 105, consistent with [3]. Finetuning
both approaches involve training the final layer of the models
and freezing all others, as described by the respective authors.
Finetuning parameters were kept the same as provided in
Whisper [4] and wav2vec2 [3]. The Whisper model undergoes

Whisper Implementation: https:/github.com/huggingface/community-
events/tree/main/whisper-fine-tuning-event
2 Wav2vec2 Fairseq: https://github.com/facebookresearch/fairseq/
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finetuning by minimizing the cross-entropy objective function,
whereas wav2vec? is finetuned by minimizing the CTC loss.

3. Corpus Description

The authors of Whisper [4] do not mention the datasets used.
However, these trained models achieved SOTA results on many
different adult speech ASR datasets [4]. For our work, we use
three different child speech datasets and one adult speech
dataset: MyST Corpus [24], PFSTAR dataset [25], CMU Kids
dataset [26] and LibriTTS dev-clean dataset [30]. The datasets
are kept consistent with previous research [27] on wav2vec?2 to
provide objective comparison with the Whisper models.

3.1. Dataset Cleanup

All the labeled data was cleaned as per the guidelines mentioned
by the authors of Whisper [4]. The abbreviations, punctuations,
white spaces, and other non-alphanumeric characters were
removed, and all the characters were changed to lowercase.
Audio data was modified to have a 16Khz sampling rate and be
16-bit mono channel. The ‘dev-clean’ subset of LibriTTS [30],
containing 9 hours of audio is used to provide an evaluation of
our experiments on adult speech. My Science Tutor (MyST)
Corpus [24] is an American English child speech dataset
containing over 393 hours of child speech, of which 197 hours
are fully transcribed. The dataset was cleaned and prepared as
mentioned in [27], with 65 hours of clean child speech divided
into two subsets: 55 hours for training and 10 hours of testing.
PFSTAR [25] includes a collection of words spoken by British
English children and contains a total of 12 hours of audio. 10
hours of this data was used for training and 2 hours was held
out for inference. CMU Kids [26] corpus was used for
validation-only, which contains 9 hours of read-aloud sentences
by children recorded at Carnegie Mellon University. While
these may not be very big speech datasets, they currently
represent the best publicly available child speech datasets.

3.2. Dataset Usage

The datasets were divided according to their usage for ‘training’
and ‘inference’. This information is summarized in Table 2.

Table 2: Dataset usage

Usage Dataset Duration
Finetuning MyST 55h 55 hours
(Training) PFS_10h 10 hours

dev-clean 9 hours
Inference MyST_test 10 hours
(Testing) PFS_test 2 hours
CMU_test 9 hours

4. Experiments and Results

4.1. Codebase

The Whisper implementation used is provided here®. The
fairseq? implementation of wav2vec2 is used for finetuning
experiments. Our trained Whisper models are available to use
on the HF platform®. The relevant information regarding model
training, hyperparameters, graphs/metrics, checkpoints, and
dataset availability are made available on our GitHub®.

3 Finetuned Whisper models: https://huggingface.co/rishabhjain16
4 GitHub: https://github.com/C3Imaging/whisper_child_speech



4.2. Experiments

In our first set of experiments (see Section 4.3.1), the original
Whisper models were evaluated on different child speech
datasets mentioned in Table 2. The models are categorized
based on their size: Tiny, Base, Small, Medium, Large, and
Large V2 (see Table 1). ‘Large-V2’ was trained for 2.5X more
epochs as compared to ‘Large’, while also adding extra
parameters for regularization [4]. There are two versions of
each model: one trained with multilingual data and one
specifically for the English language only (indicated by ‘.en’ in
the name). ‘Large’ and ‘Large-V2’ models don’t have English-
only models. Figure 1 shows a plot comparing Word Error Rate
(WER) on 12 English adult speech datasets against model
parameters (as provided by Whisper[4]). As expected, lower
WER values are obtained using models with more parameters.
We also perform a similar comparison using our child speech
datasets (more in section 4.3).

English Speech Recognition

—e— Average
Large v2

WER on 12 datasets (%)

2.5

0.0
38M

73M 244M

Model parameters

Figure 1: Whisper Parameters vs. WER on adult speech
datasets (from [4]).

The second set of experiments (see Section 4.3) involved
finetuning these Whisper models with child speech. Three
models with the best performance from the first set of
experiments are selected for further finetuning. We finetuned
each of the selected models up to 4000 epochs. We select the
best performing checkpoints from among the trained models,
which shows the lowest WER while training. Finetuning
included three experimental configurations of training data:
MyST_55h, PFSTAR_10h, and MyST_55h+PFSTAR_10h
combined. These finetuning experiments were kept consistent
with previously reported wav2vec? finetuning experiments [27]
in order to compare both models trained with a similar
distribution of finetuning data. The wav2vec2 ‘base’ and ‘large’
models are used for finetuning, which are pretrained with 960
hours of Librispeech data [31], and 60,000 hours of Librilight
data [32], respectively. The difference in their parameters sizes
can be seen in Table 1. This comparison is provided to see how
supervised and self-supervised approaches behave with child
speech.

76BM  1549M

4.3. Results and Discussion

4.3.1. Whisper Original (No-Finetuning):

Table 3 provides the WER results on the inference datasets
using different original Whisper models from the first set of
experiments. These models are provided by the authors [4] and
no initial finetuning was performed over these models. It can be
observed that the models with larger numbers of parameters
generally perform better. Among the models with the same
number of parameters, the English models perform better than
the multilingual models, suggesting that training on language-
specific data can improve performance for that language. The
lowest WER achieved are highlighted in Table 3.

5244

Table 3: WER for different Whisper and Wav2vec2 models
(without finetuning) on child speech (MyST, PFSTAR and
CMU Kids) and adult speech (dev-clean) datasets.

Models MyST_ PFS_ CMU_ dev-

test test test clean

Tiny 40.09 159.57 30.63 10.85
Tiny.en 33.02 47.11 27.32 8.62
Base 32.14 100.07 25.03 8.14
Base.en 29.15 45.70 20.75 7.18
Small 26.22 111.75 18.52 6.43
Small.en 26.72 39.00 16.82 6.06
Medium 25.11 80.97 12.67 5.58
Medium.en 28.06 35.25 14.00 6.20
Large 25.24 84.52 13.70 5.53
Large-V2 25.00 73.68 12.69 5.40
w2v2-base (LS _960) 15.41 11.20 16.33 3.40
w2v2-large (LL_60k) 12.50 8.56 14.85 3.28

Note: ‘.en’ respresents the English-only trained models, while all others represent the
multilingual models. For example, ‘Tiny’ contains both English and other multilingual
training data while ‘Tiny.en’ contains only English speech. Wav2vec? results presented
for comparison are taken from previously presented work on wav2vec? for child ASR
[27]. The ‘w2v2-base’ is pretrained with 960 hours of Librispeech data (LS_960) and
‘W2v2-large’ is pretrained with 60k hours of Librilight data (LL_60k). Both models
were finetuned using Librispeech for providing a comparison with non-finetuned
Whisper models. The WER reported in Table 3 uses zero-shot setting.

These models achieved positive results on multilingual adult
speech without the need to perform data-specific finetuning
(see Figure 1), however, the performance seems poor for child
speech, despite Whisper stating that their models generalize
well to standard benchmarks in a zero-shot transfer setting
without the need for any finetuning. We use these experiments
as a baseline for further finetuning. The models with lowest
WER were chosen (‘Medium’, ‘Medium.en’ and ‘Large-V2’)
for providing further finetuning with child speech.

4.3.2.  Whisper Finetuning with Child Speech

The Whisper finetuning experiments include three subsets of
experiments: finetuning with MyST_55h, PFSTAR_10h and a
combination of both datasets. Table 4 shows the WER of the
selected finetuned models using these subsets. During
finetuning, cross entropy loss is minimized by training only on
the last layer and freezing all other layers, allowing the model
to classify target tokens from a predefined vocabulary.

Table 4: WER on inference (test) datasets for different
Whisper and wav2vec2 models finetuned on MyST, PFSTAR
and MyST+PFSTAR-combined datasets.

ID Models MyST_ PFS_ CMU_ dev-
test test test clean
MyST (55 Hours) Finetuning:
1 Medium 11.66 19.76 16.84 5.62
2 Medium.en 11.81 17.83 15.07 6.48
3 Large-V2 12.28 10.88 15.67 4.82
4 w2v2-base 8.13 14.77 16.47 7.72
5 w2v2-large 7.51 12.46 15.25 6.43
PFSTAR (10 Hours) Finetuning:
6 Medium 16.18 3.15 16.57 5.33
7 Medium.en 15.84 3.14 15.53 5.28
8 Large-V2 15.79 2.88 15.22 5.10
9 w2v2-base 31.86 3.48 27.49 13.95
10 w2v2-large 27.17 3.50 21.35 11.60
MyST (55 Hours) + PFSTAR (10 Hours) Finetuning:
11 Medium 12.22 2.98 16.05 5.40
12 Medium.en 12.33 3.32 15.08 4.88
13 Large-V2 13.34 4.17 17.11 4.97
14 w2v2-base 7.94 2.91 15.97 7.64
15 w2v2-large 7.42 2.99 14.18 5.79

Note: Wav2vec2 results are taken from [27]. The ‘w2v2-base’ represents wav2vec2 base
model while ‘w2v2-large” represents wav2vec2 large models.



Finetuning with MyST_55h showed a significant improvement
in the WER of MyST _test and PFS_test. However, CMU_test
dataset had a 2% increase in WER, as shown in Table 4. WER
on dev-clean adult speech dataset also decreased by 1%.
Finetuning with PFS_10h also had a significant improvement
on MyST test and PFS_test. The WER on both test sets
decreased; however, the improvement in WER on the
MyST _test is not as good as when the models are finetuned with
MyST_55h. CMU_test had a 2% increase in WER, similar to
MyST_finetuning. Large-V2 Whisper model gave the lowest
WER on all four inference data setups, with WER on PFS_test
dropping to 2.88. When both MyST_55h and PFS_10h were
used for finetuning, the WER on both MyST _test and PFS_test
dropped significantly. It can be observed that for a dataset used
in finetuning, the model shows an improvement in performance
on datasets with similar distribution at inference time.

The following observations were seen in all finetuning
experiments: Whisper finetuned models yield better results than
Whisper original models, regardless of dataset distribution, but
a finetuning dataset that matches the distribution of the test
dataset can improve performance. CMU_test showed an
increase in WER regardless of the finetuning setup and
remained in the range of 15-17%. This could imply that CMU
Kids might be a noisy dataset which doesn’t work well for ASR.
The WER of dev-clean adult speech further decreased after
child speech finetuning and stayed in the range of 4-5% for all
experiments.

4.3.3.  Whisper vs Wav2vec2:

We compare Whisper models with wav2vec?2 finetuned models
on the same datasets. Table 3 and Table 4 cover the various
wav2vec? finetuning results on different child speech datasets.
We first compare Librispeech-finetuned ‘base’ and ‘large’
wav2vec2 models with the original Whisper ‘Medium’ and
‘Large’ models (See Table 3). This was done to maintain
consistency with the comparison mechanism as provided by
authors of Whisper [4]. The wav2vec2 models finetuned with
Librispeech generally performed better on child speech
compared to any of the Whisper models without finetuning.
Both these models were used to provide a usecase of ASR over
unseen child speech in low resource data scenario. Wav2vec2
results show the lowest WER on all inference datasets except
CMU_test. However, Whisper models gave lower WER on
CMU_test as compared to wav2vec2 models. This implies that
CMU Kids dataset could have acoustic properties similar to
adult speech since supervised finetuning using Whisper
decreases the WER on CMU_test.

The results of the experiments with child speech finetunings
show that wav2vec2 finetuning using MyST_55h resulted in
lower WER compared to Whisper finetuning on MyST _test.
However, an increase in WER was observed on PFS_test and
dev-clean for wav2vec2 finetuning. Both Whisper and
wav2vec? finetuned models had a WER range of 14-16% on
CMU_test. For PFS_10h finetuning, similar results were
obtained for both wav2vec2 and Whisper models on PFS_test,
with WER of 3.48 and 2.88, respectively. However, high WERs
were observed on all other inference datasets. These results
suggest that wav2vec? finetuning generalizes well for datasets
with a similar distribution, while Whisper finetuning works best
for unseen datasets at inference time. When both MyST_55h
and PFS_10h were used for finetuning, the lowest WER was
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observed with wav2vec2 finetuning across all child speech
datasets as compared to Whisper finetuning. Both Whisper and
wav2vec2 models behaved similarly when finetuned with a
combination of child speech datasets, but wav2vec2 performed
better on datasets with similar distributions as the seen datasets.
Moreover, when considering the amount of training data and
model size (model 13 vs model 14), it was observed that the
wav2vec2 model 15 (60k hours, 317M parameters) performed
better than Whisper model 13 (680k hours, 1550M parameters),
which were finetuned with the same amount of child speech
data. These findings demonstrate that wav2vec2 performs well
with child speech and slightly outperforms Whisper.

5. Conclusions

In this paper, we use the recent SOTA large-scale supervised
Whisper models for experimental analysis over different child
speech datasets. The study of different combinations of
finetuning over child-specific datasets is also presented in this
paper. Finetuning Whisper models achieved significant
improvements in accuracy of child speech recognition. We also
present comparisons with the SOTA self-supervised, wav2vec2
model. Finetuning both Whisper and wav2vec2 improves
performance of child ASR. While Whisper improves ASR
performance for both adult and child speech, regardless of the
finetuning dataset, wav2vec2 model performs better with
finetune-specific datasets. Although Whisper may be more
appropriate for unseen datasets, wav2vec? is a better choice for
real-time, task-specific applications. In addition, the use of
smaller-sized models, such as wav2vec2, would be more
feasible for deployment on edge devices, which is also using 10
times less training data than Whisper. For future work, we aim
to further study this methodology by including more low
resource datasets (both adult and child), different ASR
decoding strategies and deploying these models on edge
devices.
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Abstract— Speech synthesis technology has witnessed
significant advancements in recent years, enabling the creation
of natural and expressive synthetic speech. One area of
particular interest is the generation of synthetic child speech,
which presents unique challenges due to children's distinct vocal
characteristics and developmental stages. This paper presents a
novel approach that leverages the Fastpitch text-to-speech
(TTS) model for generating high-quality synthetic child speech.
This study uses the transfer learning training pipeline. The
approach involved finetuning a multi-speaker TTS model to
work with child speech. We use the ‘cleaned’ version of the
publicly available MyST dataset (55 hours) for our finetuning
experiments. We also release a prototype dataset of synthetic
speech samples generated from this research together with
model code to support further research. By using a pretrained
MOSNet, we conducted an objective assessment that showed a
significant correlation between real and synthetic child voices.
Additionally, to validate the intelligibility of the generated
speech, we employed an automatic speech recognition (ASR)
model to compare the word error rates (WER) of real and
synthetic child voices. The speaker similarity between the real
and generated speech is also measured using a pretrained
speaker encoder.

Keywords—Fastpitch, synthetic speech, child
wav2vec2, MOSNet, Waveglow, MyST dataset.

speech,

1. INTRODUCTION

Speech synthesis technology has witnessed significant
advancements in recent years, enabling the creation of natural
and expressive synthetic speech. One area of particular
interest is the generation of synthetic child speech, which
presents unique challenges due to children's distinct vocal
characteristics and developmental stages. Early research on
Text-to-Speech (TTS) synthesis began several decades ago,
primarily using concatenative and parametric methods [1]-
[4]. While these methods generated speech from text, the
resulting audio lacked naturalness and sounded robotic.
Recent advancements in TTS models, mainly based on deep
neural networks (DNN), have significantly improved the
quality of synthesized speech. Tacotron [5], a neural
sequence-to-sequence model, marked a notable improvement
in speech synthesis quality. Subsequent models like Tacotron2
[6], FastSpeech [7], FastSpeech2 [8], FlowTTS [9], GlowTTS
[10], Fastpitch [11], and Adaspeech [12] have further evolved
TTS capabilities and improved TTS speech quality.
Deepvoice2 [13] introduced the use of speaker verification
models [14]-[16] to achieve multi-speaker TTS [17]-[21].

Child-TTS (CTTS), or TTS synthesis for child speech is
currently limited due to the scarcity of child voice datasets
and the challenges associated with their creation. Collecting
child speech data for TTS research is challenging. Most TTS
datasets are created in studios with expensive equipment,

979-8-3503-2797-7/23/$31.00 ©2023 IEEE
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tailored for adult voices. While the pitch for adults typically
falls between 70 to 250 Hz, children's speech ranges from 200
to 500 Hz [22]. Additionally, child speech exhibits distinct
characteristics from adult speech, such as a higher
fundamental frequency and variable speaking rates compared
to adults [23]-[26]. Moreover, children tend to have longer
phoneme durations and different prosody features due to their
smaller vocal tracts [27]-[29].

This research aims to harness the potential of state-of-the-
art (SOTA) TTS methods such as Fastpitch [11] to construct
a pipeline for synthesizing children's voices while
minimizing data requirements. The primary objective is to
demonstrate the pipeline's ability to reliably generate a
variety of self-consistent, distinct children's voices. Fastpitch
utilizes a pitch prediction and duration prediction module
which captures pitch variations in speech and enables more
precise control over the speaking rate. This study uses an
existing multispeaker children's speech dataset [30], which
was cleaned to make it more suitable for CTTS research [31].
Subsequently, Fastpitch was trained on the cleaned dataset to
generate synthetic speech for multiple child speakers, serving
as a proof of concept.

By incorporating Fastpitch into the synthesis pipeline, we
can effectively capture the unique prosodic features and
intonation patterns present in speech. Our objective is to
further optimize this model for child speech to accommodate
individual characteristics, such as gender and regional
accents, to produce realistic synthetic child voices. By using
this approach, we intend to overcome the limitations of
traditional TTS systems that often fail to capture the
naturalness and authenticity of child-like speech. Our
hypothesis is centered on the idea that pretraining the TTS
model on adult speech data and subsequently finetuning it
with child speech data can facilitate the synthesis of artificial
child speech.

As part of this research, we also release a small set of
synthetic datasets generated from this research. Objective
evaluations were conducted on the synthesized child voices,
comparing them to real child voices in terms of various
acoustic features and Mean Opinion Score (MOS). The
evaluation encompassed factors such as 'Naturalness',
'Intelligibility’, and 'Speaker Similarity. Furthermore, we
compared this approach with our previously reported
Tacotron 2 TTS pipeline for the child speech synthesis [32].
In this study, no subjective evaluation was conducted;
however, it will be taken into consideration for future
research.

The potential applications of this research are wide-
ranging and impactful such as educational tools, audiobooks
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for children, language learning, interactive games and toys,
virtual learning companions, and child-friendly voice
assistants and chatbots to name a few. Such a pipeline would
also enable the creation of large synthetic datasets, which
could, in turn, enhance other areas of child speech research,
such as speaker recognition and automatic speech recognition
[33], [34].

II. METHODOLOGY

Fastpitch is a fully parallel TTS model conditioned on
fundamental frequency contours. By incorporating Fastpitch
into the synthesis pipeline, we can effectively capture the
unique prosodic features and intonation patterns present in
child speech. We present a multispeaker framework for TTS
using a transfer learning approach that uses Waveglow
vocoder for audio synthesis. We also evaluate this
methodology using different objective evaluation methods to
provide the validity of this approach. Fastpitch is used in this
work due to its various advantages such as faster inference
speed, improved prosody control, enhanced naturalness,
duration control, multilingual support, and simplified
architecture as compared to previous TTS approaches.

A. Datasets

In this section, we give an overview of the datasets used
to finetune our pipeline and to implement some of our
evaluation methods.

1) TTS Datasets:

These datasets are used for the TTS experiments for
pretraining and finetuning the TTS model.

LibriTTS [35]: The LibriTTS corpus is an adult speech
dataset that includes 585 hours of speech data sampled at a
rate of 24kHz, obtained from a diverse set of 2,456 speakers.
LibriTTS is widely used in research for training and
evaluating text-to-speech systems.

MyST [30]: My Science Tutor (MyST) Corpus [36] is an
American English child speech dataset from 1371 students
containing over 393 hours of audio data out of which 197
hours are fully transcribed. We use the cleaned version of this
dataset (derived from [31]), with 65 hours of speech divided
into two subsets: 55 hours for training, called ‘MyST _train’
and 10 hours for testing, called ‘MyST test’. This 55 hours
of training data is used for TTS training.

2) Text Datasets:
These datasets are used during inference as input text for

the TTS model to generate data samples from the finetuned
synthetic child voices.

Harvard Sentences [36]: Harvard sentences consist of
720 sentences that are carefully designed to be phonetically
balanced. These sentences effectively encompass a wide
range of phonemes.

LJ Speech Sentences [37]: This dataset contains 13,100
sentences extracted from the LJ Speech dataset.
B. Multispeaker child TTS using Fastpitch

1) Fastpitch (Acoustic Model) [11]:

FastPitch is a streamlined TTS model with a simplified
encoder-decoder architecture, designed for faster inference
and improved prosody control. In the multispeaker FastPitch
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TTS model, the input text is encoded using an encoder
module, which typically comprises stacked layers of
convolutional neural networks (CNNs) or recurrent neural
networks (RNNs). The encoder processes the linguistic
features of the text, such as phonemes or graphemes, and
generates intermediate representations. The duration
predictor module takes the intermediate representations from
the encoder and predicts the duration of each phoneme or
character in the input text. This enables the model to capture
and generate natural speech rhythm and timing. The pitch
predictor module takes the intermediate representations and
predicts the fundamental frequency (FO) contour, controlling

the pitch variations in the synthesized speech. The
architecture of Fastpitch is detailed in Figure 1.
MSE Loss |
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R
Conv 1D Hepeat AN
...... T { FC
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A Predictor Predictor |EConVilD
Conv 1D . f
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Fig. 1. Fastpitch Architecture [11].

We also condition the model on the speaker by adding a
global speaker embedding [38] to the input tokens. The
speaker embedding integration with the TTS framework
[39]-[41] allows the model to capture the unique
characteristics of different speakers. These embeddings
encode speaker-related information in a vectorial
representation for each speaker. During training, the model
learns to associate speaker embeddings with the
corresponding speakers, allowing it to generate speech that
not only follows the desired linguistic content but also
reflects the distinct vocal attributes of specific speakers. The
primary loss function is the mean squared error (MSE)
between the predicted mel-spectrogram and the target mel-
spectrogram. Our work uses a newer version of Fastpitch,
which is based on using the self-attention framework
proposed in [38]. This enables the TTS model to learn
speech-to-text alignment in parallel to TTS training instead
of relying on an external aligner.

2) Transfer Learning Pipeline:

The proposed methodology involves pretraining the
Fastpitch TTS model on a diverse dataset of adult speech,
covering various age groups, linguistic backgrounds, and
speech contexts. The LibriTTS dataset was used in this work.
By finetuning the pretrained model on a smaller subset of the
child speech dataset, such as MyST, will enable the model to
learn the distinctive acoustic properties and pitch contours
specific to child speech. Moreover, the model can be further
optimized to accommodate individual characteristics, such as
gender and regional accents, to synthesize more realistic
CTTS voices.
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LibriTTS Adult MyST child
speech dataset speech dataset

a) Pretraining (Training from
scratch till 250k Iterations)

b) Finetuning (Resumed training
from 250k to up to 520k iterations)

Fig. 2. Transfer learning pipeline: a) Pretraining: model being trained with
LibriTTS dataset for up to 250k iterations. b) Finetuning: Resuming the
acoustic model training with the MyST dataset from 250k iteration onwards
up to 520k iteration.

The finetuning pipeline is kept consistent with our
previous approach using Tacotron 2 [32] to allow for
comparisons. Figure 2 describes the transfer learning
pipeline. The model is first trained with the LibriTTS dataset
(585 hours) for up to 250k iterations until a consistent low
loss threshold is achieved, and the model starts to converge.
After that, the model was finetuned for up to 520k additional
steps using the MyST dataset (55 hours).

3) Waveglow (Vocoder) [42]:

WaveGlow is a SOTA vocoder model that generates high-
quality and natural-sounding speech waveforms. It is based on
a generative flow-based model architecture which models the
distribution of speech waveforms. WaveGlow operates by
taking a spectrogram representation of the speech as input and
generating the corresponding waveform. The model employs
an invertible neural network to transform the spectrogram into
a latent space representation and then uses a series of
invertible coupling layers to map this latent representation
back into the waveform domain. Our WaveGlow model is
trained on LibriTTS adult speech data which learns the
complex relationship between spectrograms and waveforms.
It was observed that Glow models [43]-[46] has popularly
been used as a universal vocoder [45] and has been shown to
work well with unseen speakers in multi-speaker models as
well [47], [48]. Therefore, for the scope of this paper,
WaveGlow (trained on LibriTTS) is used as a universal
vocoder with synthetic child voices.

III. EXPERIMENTS

A. Training details

The implementation is obtained from Nvidia’s FastPitch
Github!. For our training and finetuning process, we utilized
two A6000 40GB GPUs. We employed a learning rate of 0.1
and a weight decay factor of 1e-6, maintaining consistency
with their original implementation [11]. Additionally, the
remaining hyperparameters were retained as per the provided
implementation details. To ensure a smooth training process,
we incorporated a warmup training step with a factor of 2000.

B. Experiments

1) Initial Experiments: These experiments involved using
the LJ speech dataset for single-speaker finetuning. The
model was first trained with LJ Speech and then finetuned

! https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyT
orch/SpeechSynthesis/FastPitch

Text, Mel, ] [ Global Speaker ] A [ Text, Mel, ] [ Global Speaker ] |
3 on last : 3 mels WaveGlow
[ Pltlch Embe]ddmg rained . Pmih Embedldmg Vocodar
inference
FASTPITCH FASTPITCH WAVS
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with a single speaker from the MyST dataset. The output
audio obtained was quite noisy. We also tried training the LJ
speech single-speaker dataset and finetuning it with the
complete MyST dataset (considering it as a single-speaker
dataset). However, the results obtained didn’t sound like child
speech. Hence, finetuning on a single speaker was not
explored further.

2) Main Experiments: These experiments involve
multispeaker TTS training. The model was first trained with
the LibriTTS dataset. Figure 3 shows an example loss curve
of the LibriTTS training.

Fig. 3. LibriTTS pretraining curve (MSE loss vs. number of epochs)

It can be observed that for the first 2000 warmup steps, loss
decreases gradually. After that loss decreases steadily until it
reaches an average loss of 0.3 around 250k epoch. Since there
was no improvement in loss function after that, it was decided
to pause the training for further finetuning.

Further finetuning was performed from epoch 250k
onwards on the MyST dataset. The loss increases until it
starts to decrease around 260k epoch. From this point, there
is a gradual decrease in loss until 520k steps. No significant
improvement was observed in loss after this epoch. This was
also verified by manually listening to generated audio files at
an interval of every 50k epoch. After 550k epochs, the model
exhibited signs of overfitting and began learning noise
features in the MyST dataset, resulting in a decline in the
quality of the synthesized audio.

260k 280k 00k 20k 340k

360k

380k 00k 4k 440k

Fig. 4. MyST Finetuning curve (MSE loss vs. number of epochs).

C. Synthetic Datasets

We have generated two sets of synthetic child speech
datasets. The dataset demographic is detailed in Table III.
The dataset is made available through our GitHub?. Since the
dataset was generated at a 22Khz sampling rate, FFmpeg was
used to convert the data into a 16khz sampling rate for
objective evaluation. The dataset is made available in both
sampling rates. The dataset details are available below:

2 https://github.com/C3Imaging/child_tts fastpitch/
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TABLE L SYNTHETIC DATASET DEMOGRAPHICS
Dataset Speakers Hours Utterances data/speaker
CS_HS 40 29.02 28,800 43.53 minutes
CS LJ 2 47.61 26,200 23.8 hours

1) CS_HS—This dataset used Harvard Sentences as a text
reference to generate the synthetic child speech dataset. We
selected the 40 speakers with the most amount of data in
hours. from the LibriTTS dataset which was used to generate
40 child speakers. See Table 1 for more details.

2) CS_LJ — This dataset used L] Speech transcripts as a
text reference to generate the synthetic child speech dataset.
We selected one male and one female speaker from the
LibriTTS dataset which contained the most amount of
training. These speakers were subjected to generate the
child’s speech. See Table 1 for more details.

IV. RESULTS AND EVALUATION

Our experimental findings demonstrate the successful
synthesis of child voices using our proposed methodology.
To assess the validity of the generated speech, we conducted
objective evaluations, specifically focusing on the aspects of
Naturalness, Intelligibility, and Speaker similarity.
Furthermore, we conducted a comparative analysis with our
previous research, which involves synthesizing child speech
using the Tacotron 2 model. For the evaluation process, we
randomly selected 120 utterances from the original MyST
dataset, Tacotron-based synthetic dataset, and Fastpitch-
generated synthetic utterances (from III.B). This allowed us
to systematically compare the quality of speech generated by
both the Tacotron 2 [32] and Fastpitch models within the
context of child speech synthesis.

A. Objective Naturalness Evaluation using the pretrained
MOSNet [49]

TABLE IL. MOSNET OUTPUT FOR 120 SAMPLES WITH 95%
CONFIDENCE INTERVAL
Dataset MOS
Adult speech (Librispeech test_clean) 3.78+0.07
Original Child Speech [MyST] 2.91+0.07
Tacotron 2 based synthetic child speech [32] 2.60 +0.06
Fastpitch based synthetic child speech [Our work] 3.10+£0.12

Table 1 provides the Mean Opinion Scores (MOS) for 120
different speech samples using the pretrained MOSNet model
[49]. MOSNet, trained on adult speech, exhibits a high
correlation with human MOS ratings. However, its
generalization to child speech is doubtful. Therefore, we only
use MOSNet in this study to explore the correlation between
reference child audio and synthetic child audio. It acts as a
measure to validate the ‘Naturalness’ of the speech The
original child speech from the MyST dataset received an
average MOS of 291 + 0.07, indicating moderate
acceptability. The Fastpitch-generated child speech indicates

3 https://github.com/facebookresearch/fairseq/tree/main/examples/wav2
vec
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higher quality than both the original speech and Tacotron2.
These results suggest that the Fastpitch model, as
implemented in our research, produces a strong correlation
between synthetic child speech and real child speech.

B. Objective Intelligibility Evaluation using a pretrained
wav2vec2 ASR System [50]

TABLE III. WER ON 120 RANDOMLY SELECTED UTTERANCES FROM
ADULT SPEECH, REAL CHILD SPEECH, AND SYNTHETIC CHILD SPEECH USING
THE WAV2VEC2 BASE ASR MODEL

Dataset WER
Adult Speech (Librispeech test_clean) 343
Original Child Speech [MyST] 15.27
Tacotron 2 based synthetic child speech [32] 25.63
Fastpitch based synthetic child speech [Our work] 17.61

In this study, we employed the wav2vec2 base model 3,
which was finetuned with 960 hours of the Librispeech
dataset, to evaluate the 'Intelligibility’ of the generated child
speech. Since wav2vec2 is a SOTA ASR model, it was
intended to use this as a validity metric for the synthetic
speech. Additionally, we conducted a comparative analysis
with our previous approach utilizing Tacotron 2 [32]. Table
IT provides WER for different speech datasets. The adult
speech dataset achieved a strong WER of 3.43, considering
the model's training on adult speech data. Our Fastpitch-
based approach achieved a WER of 17.61, closely resembling
the WER of the original child speech from the MyST dataset.
Moreover, it surpassed the WER of the Tacotron 2 generated
child speech, indicating improved performance over the
synthetic child speech.

C. Speaker similarity verification using a pretrained

speaker verification system [15]

Speaker similarity between a synthesized speech and a
real speech can be calculated using a speaker verification
system [15]. The pretrained speaker encoder from
Resemblyzer* was used to extract and visualize the speaker
embeddings. This tool uses cosine distance to calculate the
similarity between the two embeddings.

a) Embedding projections

. Speakers
e adult_female ® myst_child2
® adult_male e syn_childl
myst_childl syn_child2
»

4 https://github.com/resemble-ai/Resemblyzer
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Fig. 5. a) Projections of embeddings between different real and synthetic
child speech in comparison to adult speakers. b) Cross-similarity between 10
speakers in Set A and Set B.

For this evaluation, 6 speakers were randomly selected: 2
from LibriTTS [one male and one female], 2 from the MyST
dataset, and 2 from the synthetically generated CS HS
dataset. We selected 10 utterances for each speaker in a
random order. A visualization of this similarity in a 2D
projection can be seen in Figure 5a. It can be observed that
most of the child speakers (both real and synthetic) are very
close in a cluster compared to adult male and female
speakers.

To further demonstrate the similarity between real child
speech and synthetic child speech, cosine similarity was used
to calculate the cross-similarity between each speaker. All 6
speakers were divided into two sets, A and B. Speaker
embeddings are extracted for each of the utterances for each
of the sets and averaged together for each speaker. This gave
us 6 unique speaker embeddings in sets A and B for each of
the 6 speakers. Cosine similarity is finally used to measure
the similarity between sets A and B. Figure 5b shows the plot
for the cross similarity between 6 speakers. The similarity for
most of the child and adult speech is between 0.34-0.53
whereas the similarity for synthetic child speech and real
child speech is between 0.63-0.98. The average similarity
between synthetic and real child voices is 77%. Hence, we
can conclude that our synthetically generated child speech is
quite close to real child speech in terms of speaker similarity.

V. CONCLUSION AND FUTURE WORK

This paper presents a pipeline for synthesizing child
speech in scenarios with limited training data. The proposed
approach involves cleaning an existing child speech dataset
to create a small, curated dataset suitable for TTS training. A
transfer learning technique is employed, utilizing pretraining
on adult speech data and finetuning on child speech data.
Objective evaluations using MOSNet demonstrate a strong
correlation between real and synthesized child voices. Using
apretrained adult speech wav2vec2 ASR model, the WER for
synthetic child voices was measured at 17.61, compared to a
WER of 15.27 for real child voices. Speaker similarity
evaluation using a pretrained speaker encoder yields an
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average cosine similarity of 77% between synthetic speech
and the original speakers. Synthetic child speech samples are
available on the project's GitHub. We also release two small
synthetic child speech datasets generated from this work.
Multi-speaker TTS proves to be a valuable approach for child
speech synthesis, even with limited training data.

For Future work, we aim to perform a subjective
evaluation (as proposed in [32]) on the released dataset for
better clarity over the ‘Naturalness’, ‘Intelligibility’, and
‘Speaker Similarity’ of the generated child speech.
Furthermore, it is also intended to investigate the use of
synthetically generated child speech to enhance other areas of
child speech research, such as ASR and speaker recognition.
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ABSTRACT Modern end-to-end Automatic Speech Recognition (ASR) systems struggle to recognise children's speech.
This challenge is due to the high acoustic variability in children's voices and the scarcity of child speech training data,
particularly for accented or low-resource languages. This study focuses on improving the performance of ASR on native and
non-native English child speech using publicly available datasets. We evaluate how the large-scale whisper models (trained
with a large amount of adult speech data) perform with child speech. In addition, we perform finetuning experiments using
different child speech datasets to investigate the performance of whisper ASR on non-native English-speaking children’s
speech. Our findings indicate relative Word Error Rate (WER) improvements ranging from 29% to 89% over previous
benchmarks on the same datasets. Notably, these gains were achieved by finetuning with only a 10% sample of unseen non-
native datasets. These results demonstrate the potential of whisper for improving ASR in a low-resource scenario for non-
native child speech.

INDEX TERMS child automatic speech recognition, whisper, large-scale supervision, MyST, PFSTAR, CMU_K:ids,
speechocean762, non-native child speech.

I. INTRODUCTION supervised models like wav2vec2 [3], [13], which were

While ASR performance for adult speech has improved in
recent times due to the availability of large-scale transcribed
speech corpora and the development of end-to-end (E2E)
attention-based acoustic models [1]-[4], the same benefits
have not been extended to the child speech domain due to a
lack of available transcribed child audio data. The acoustic
variability in children's speech caused by developmental
changes of the vocal tract coupled with the child’s limited
linguistic and phonetic knowledge affects the performance of
ASR systems for this age group [5]-[8]. Furthermore, the
scarcity of data for ASR training in the child speech domain
is an acute problem, as acquiring and annotating such data is
a complex and resource-intensive task [9].

Recent developments in transfer learning have shown
promising results in ASR, especially in recognizing speech
from low-resource languages [10]-[12]. A key strategy
involves finetuning an acoustic model. The model leverages
frame-level acoustic representations derived from self-
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initially trained on vast amounts of unlabeled adult speech
data using a masking objective. This has proven to be
effective for downstream speech recognition applications
with small amounts of labelled data. However, the self-
supervised learning (SSL) training procedure for ASR is
less effective in the case of domain shifting [14]. This
means that the performance drops when the model
encounters data that significantly differs from the training
set, such as non-native child speech, making accurate
recognition difficult.

Supervised transfer learning has also emerged as a
promising solution to this problem. It adapts features
learned from adult speech to enhance child speech
recognition [15]-[18]. Additionally, audio augmentation
techniques, which expand the training dataset [19]-[21],
have also been effective in boosting ASR performance for
child speech. Recent work on ASR for non-native child
speech has also explored transfer learning as a way to make
significant improvements [15], [19]-[21]. For instance, the
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use of a pretrained transformer model for transfer learning
has been investigated to better adapt to non-native
children's speech [18]. Moreover, there have been notable
strides in supervised learning approaches that show
potential for child speech recognition [16], [22], [23].
Previous studies [24], [25] have demonstrated that training
models across multiple datasets using supervised learning
methods can enhance the model's ability to generalize
across new, unseen datasets. This broad approach to
training suggests a pathway towards more robust and
adaptable ASR systems capable of handling the
complexities of unseen child speech.

Given the low-resource nature of child speech and the
limited datasets available for research use, this study opted
to utilize the recent state-of-the-art (SOTA) Whisper [4]
approach. Whisper has successfully addressed the
challenges of weakly supervised speech recognition by
training on large amounts of labelled adult audio datasets in
a supervised manner. It has shown impressive performance
in low-resource multilingual languages due to its multitask
learning objectives and the use of multilingual datasets for
training [4]. This research aims to investigate whether
Whisper's multilingual training approach can enhance ASR
performance in the particularly challenging area of low-
resource child speech. First, we evaluate the performance of
the original pretrained whisper models on different native
and non-native English child speech datasets. Since whisper
learns speech representations from a large number of
multilingual audio datasets, it was also intended to adapt
these whisper models for non-native English child speech
datasets by performing further finetuning.

The primary contribution of this paper lies in adapting and
finetuning the whisper model for child speech recognition.
While finetuning large transformer models on small
datasets is a well-established practice, our study goes
beyond this by focusing on the unique characteristics and
challenges associated with non-native child speech data.
Through the careful crafting of experiments, we
demonstrate the effectiveness of the whisper transformer
model and wish to underscore the practical implications of
our research, such as the promising applications of the
finetuned model in real-world scenarios. Child speech
recognition has wide-ranging applications in the education,
healthcare, and accessibility domains. The main
contributions of the paper are highlighted as the following:

o Demonstrates significant performance improvements
on non-native English child speech datasets.

e Showcases whisper's ability to adapt effectively to
diverse child speech datasets through finetuning.

e Proves whisper's resistance to catastrophic forgetting,
maintaining performance on adult speech while
improving child speech recognition.

e Provides insightful analysis and discussions of the
outcomes derived from whisper finetuning.

ll. METHODOLOGY

In this work, the whisper [4] model is used, showcasing the
benefits of large-scale weakly supervised pre-training for
improved ASR performance. It employs training data of up
to 680,000 hours of labelled audio data, of which 117,000
hours include 96 non-English languages and 125,000 hours
of X—en translation data.

A. Whisper Architecture

The architecture of the whisper model (see Figure 1) is based
on an encoder-decoder transformer, which uses 80-channel
log-Mel spectrograms as input. The encoder consists of two
convolution layers with a kernel size of 3, a sinusoidal
positional encoding, and a stacked set of transformer blocks.
The decoder also uses the learned positional embeddings and
the same number of transformer blocks as the encoder. The
model uses a byte-level BPE text tokenizer [26] for English-
only models and refits the vocabulary for multilingual
models to avoid excessive fragmentation in other languages.
A multitask training format is used, where models are trained
to perform various speech-processing tasks using a single
decoder. Multitask training is done by conditioning the
decoder on a sequence of input tokens that specify the task
and desired output format. These tasks include multilingual
speech recognition, spoken language detection, speech
translation, and voice activity detection.
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FIGURE 1. Whisper: Sequence-to-sequence Transformer model trained
on multitask learning (figure from [4]).

B. Training Details

The models were optimized using AdamW [27] and gradient
norm clipping [28] with a linear learning rate decay with a
warmup over the first 2048 updates. The pretrained whisper
models are categorized based on their sizes, namely: tiny,
base, small, medium, and large (see Table 1). There are two
versions of each model: one trained with multilingual data
and one using only English data (indicated by ‘.en’ in the
name). We provide the initial non-finetuning results on all
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the available pretrained models. We select the best-
performing models and apply finetuning to those.
Acrchitectural hyperparameter details can be found in Table 1.

TABLE1
ARCHITECTURE PARAMETERS FOR WHISPER
Models Layers Width Heads | Parameters

Tiny 4 384 6 39M
Base 6 512 8 72M
Small 12 768 12 244M
Medium | 24 1024 16 769M
Large 32 1280 20 1550M

Note: After the release of the initial whisper models, the authors trained
the ‘large’ model for an additional 2.5X epochs, incorporating various
regularization techniques [4]. This updated model is denoted as Large-V2.

Whisper is trained using a large amount of multilingual
speech datasets including low-resource languages, and we
aimed to investigate whether this multilingual-focused ASR
model could be used to improve performance on non-native
child speech. We performed finetuning using parallel child
audio data on the final layer of the pretrained whisper models
for up to 4000 epochs [4], with a learning rate of 1e-05 and a
linear learning rate scheduler.

C. Decoding in Whisper

The whisper ASR system employs several decoding
strategies during inference [4], and these strategies are
executed up to six times. The goal is to select the best
transcription based on the heuristics and the decoding
strategies' performance.

1. Beam Search with 5 Beams: This strategy uses beam
search, a common technique in ASR systems. It
explores multiple hypotheses (in this case, five) and
selects the one with the highest log probability as the
final transcription. This approach favours more
probable sequences.

2. Greedy Decoding with Best of 5 Sampling: Greedy
decoding starts with the most likely token at each step,
while sampling introduces randomness. The system
uses a sampling temperature schedule (0.0, 0.2, 0.4,
0.6, 0.8, 1.0) for successive attempts. Lower
temperatures make the sampling approach more
deterministic, while higher temperatures allow more
randomness in token selection. This strategy explores a
range of sampling behaviours to find the most suitable
transcription.

These decoding strategies are applied to enhance
transcription quality, particularly in situations where the
model may be less certain, such as when there is
background noise or other challenging audio conditions are
present. The impact of these decoding strategies can vary
across different datasets, as noted in the whisper paper [4],
but collectively, they help improve transcription accuracy
and reliability by considering both the model's confidence
and the compression characteristics of the transcribed text.

We do not use any external language models since it was
intended to keep the decoding technique identical to the
original implementation by the whisper authors [4] and
concentrate on the recognition capabilities of the finetuned
acoustic models.

Ill. CORPUS DESCRIPTION

The authors of Whisper do not explicitly mention the list of
training datasets used for pretraining [4]. We used the
following child speech datasets for our finetuning and
testing experiments: MyST Corpus [29], PFSTAR Corpus
[30], CMU_Kids Corpus [31], and Speechocean672 [32].
LibriTTS [33] was the only adult dataset used in the
experiments during inference.

A. Dataset Cleaning and Description

Each dataset was cleaned according to whisper authors’ text
standardization  guidelines [4]. The abbreviations,
punctuations, white spaces, non-linguistic symbols, and
other non-alphanumeric characters were removed from the
transcripts, and all the characters were changed to
lowercase. All the audio data was converted to a 16-bit
mono channel with a 16Khz sampling rate and saved as
“wav’ audio files, while the transcriptions were saved as
“txt’ files. Child data-specific cleaning methodology was
kept consistent with [34]. Given the low resource nature of
non-native child speech datasets, we opted to split the
available data into 80% for testing and 20% for training.
Allocating a larger proportion of the data for testing helped
obtain more objective results. The datasets used are
described below:

1) LibriTTS [33] is a multispeaker English adult speech
dataset. The ‘dev-clean’ subset of LibriTTS with 9 hours of
audio is used as the representative for adult speech for our
finetuned models during testing.

2) My Science Tutor (MyST) Corpus [29] is an American
English child speech dataset containing over 393 hours of
audio data out of which 197 hours are fully transcribed. We
use the cleaned version of this dataset (as described in
[34]), with 65 hours of speech divided into two subsets: 55
hours for training, called ‘MyST train’ and 10 hours for
testing, called ‘MyST test’.

3) PFSTAR Corpus [30] contains a collection of words
spoken by native British English children and non-native
English child speech from Swedish, German, and Italian
natives. The cleaned PFSTAR British dataset (as described
in [34]) contains a total of 12 hours of usable audio. This
data was divided into 10 hours for training, called
‘PF_br_train’, and 2 hours for testing, called ‘PF_br_test’.

The PFSTAR Swedish subset contains 1.27 hours of
English child speech with Swedish accents. It is divided
into 1.01 hours (80%) for testing and 0.24 hours (20%) for
training. Testing and training subsets are named
‘PF_sw_test” and ‘PF sw train’, respectively. The
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PFSTAR German subset contains 3.4 hours of English child
speech with German accents and is divided into 2.55 hours
(80%) for testing and 0.68 hours (20%) for training,
referred to as ‘PF_ge test and ‘PF_ge train’, respectively.
The PFSTAR ltalian subset, containing 3.5 hours of Italian-
accented English child speech, is divided into 2.8 hours
(80%) for testing and 0.7 hours (20%) for training, called
‘PF_it_test’ and ‘PF_it_train’, respectively.

4) CMU _Kids [31] contains 9 hours of read-aloud
sentences recorded by children at Carnegie Mellon
University. This was divided into 7 hours for training,
called ‘CMU train’ and 2 hours for testing, called
‘CMU _test’. Compared to other child speech datasets, the
CMU_Kids dataset is quite noisy and contains many
different types of background noises.

5) Speechocean762 [32] contains non-native English
speech from Chinese-accented speakers of different age
groups. We selected speakers whose age was less than 18,
amounting to 2.4 hours of speech divided into 1.92 hours
(80%) for testing and 0.48 hours (20%) for training, named
‘SO _test’ and ‘SO _train’ respectively.

B. Dataset Usage in Training and Testing
MyST, PFSTAR British, and CMU_Kids are considered
native English child speech datasets, while PFSTAR
(Swedish, German, and lItalian) and Speechocean762 are
non-native English child speech datasets in this study. The
dataset division into training and testing categories is
presented in Table 2.
TABLE 2
DATASETS USED FOR TRAINING AND TESTING
Finetuning/Training Test Datasets
Datasets

MyST _train (55 hours)
PF_br_train (10 hours)
CMU_train (7 hours)
PF_sw_train (0.24 hours)
PF_ge_train (0.68 hours)
PF _it_train (0.7 hours)
SO_train (0.48 hours)
NN_50 (1.06 hours)
NN_100 (2.13 hours)

MyST _test (10 hours)
PF_br_test (2 hours)
CMU_test (2 hours)
PF_sw_test (1.01 hours)
PF_ge_test (2.55 hours)
PF _it_test (2.8 hours)
SO_test (1.92 hours)
dev-clean (9 hours)

Due to the limited volume of non-native data, we
consolidated the non-native training datasets described
earlier into two distinct subsets for the purpose of
finetuning:

Non_Native 10 (NN_10): This subset comprises half of
the selected non-native training sets, specifically
PF_sw_train, PF_ge_train, PF_it train, and SO_train. It
represents 10% of the overall non-native data pool.

Non_Native 20 (NN_20): This subset encompasses the
entire range of non-native training datasets mentioned,
including PF_sw_train, PF_ge train, PF_it train, and

SO _train in their entirety. This constitutes 20% of the total
non-native dataset.

IV. CODEBASE AND EXPERIMENTS

A. CODEBASE

The whisper finetuning codebase, used for implementing
our initial testing and subsequent finetuning is available
herel. Our trained whisper models are openly available to
use on the Hugging Face platform?. The information
regarding the checkpoint, model parameters, learning rates,
training curves, dataset availability, and access to cleaned
datasets are available on our GitHub3. We followed the
same finetuning approach as in our earlier work with the
whisper model [35]. This study is essentially a continuation
of our previous research, where we specialized whisper
models for recognizing children's speech and compared it
with the wav2vec? self-supervised approach on the same
distribution of datasets.

Nine sets of experiments were conducted, organized into
groups A, B, C, D, E, F, G, H and | as detailed below.
Table 3 shows the Word Error Rates (WERS) obtained from
these experiments, a standard metric for evaluating ASR
system performance. WER quantifies the error rate in
recognizing spoken words against a reference transcript,
calculated by summing substitution, deletion, and insertion
errors, then dividing by the total word count in the
reference. A lower WER indicates better performance.

Group A served as the baseline, comprising tests on the
original Whisper models without finetuning. This
establishes the benchmark performance. The remaining
groups (B, C, D, E, F, G, H, and I) focused on the three top-
performing models from group A, which were finetuned
using different distributions of child speech training
datasets as detailed in Table 2. Various experiments were
conducted to finetune the ASR models by utilizing different
combinations of child speech datasets. The objective was to
identify the optimal combinations of child audio training
data that would result in the lowest WERs on diverse test
datasets. Additionally, different data distributions were
employed to determine the complementary datasets and
identify those that hindered the improvement of the ASR
model.

In Group B, the models were subjected to finetuning using
the MyST _train dataset, which was selected for the initial
finetuning experiments as it is the largest available child
speech dataset. Subsequently, in Group C and Group D
experiments, the next largest datasets, namely CMU_train
and PF_br_train, were added along with MyST_train.
Group C models used the MyST train and CMU_train

1 Whisper Implementation: https:/github.com/huggingface/community-
events/tree/main/whisper-fine-tuning-event

2 Finetuned Whisper models: https://huggingface.co/rishabhjain16

3 GitHub: https://github.com/C3Imaging/whisper_non_native_child_asr
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datasets, while Group D models used the MyST _train and
PF_br_train combination of datasets. For Group E
finetuning experiments, all three datasets, namely
MyST train, CMU_train, and PF_br_train, were used
collectively. The remaining experiments focused on
finetuning using different distributions of Non-Native
English child speech datasets (NN_10 and NN_20), to
study the performance of the finetuned models on the test
datasets. Thus, in Group F, the models were finetuned using
the MyST _train, PF_br_train, and NN_10 datasets, while in
Group G, the models were finetuned using the MyST _train,
PF_br_train, and NN_20 datasets. Finally, we wanted to
assess the ASR performance using the complete set of
available datasets, therefore, Group H models were
finetuned using the MyST _train, CMU_train, PF_br_train,
and NN_10 datasets. Similarly, Group | models were
finetuned with the MyST_train, CMU_train, PF_br_train,
and NN_20 datasets.

V. RESULTS AND DISCUSSIONS

A. MAIN RESULTS FROM GROUP EXPERIMENTS
The results obtained from these experiments are presented
in Table 3 and the lowest WERs are highlighted in bold.

1) GROUP A

The results from Group A highlight the WERs of pre-
trained Whisper models across various speech datasets as
outlined in Table 2. The findings show that smaller models,
including Tiny, Base, and Small, generally exhibit higher
WERs compared to the larger models, namely Medium and
Large, as documented in Table 3. This trend suggests that
the larger models, due to their increased size, possess a
greater capacity for generalization, thereby enhancing
speech recognition accuracy. When comparing models of
equivalent size, it was observed that English-only models
outperform their multilingual counterparts. This indicates
that models trained specifically on language-focused
datasets exhibit improved performance for those particular
languages. Based on these insights, the models
demonstrating the most robust performance — specifically
the 'Medium', 'Medium.en', and 'Large-V2' models — were
chosen for subsequent finetuning experiments.

2) GROUP B

The finetuning of models with the MyST_train dataset in
Group B resulted in notable enhancements in ASR
performance across all test datasets, with the sole exception
of the CMU _test dataset. This could indicate a mismatch
between the characteristics of the CMU_test data and the
training data used for finetuning, possibly due to accent,
dialect, or speech complexity differences not adequately
covered by the MyST_train dataset. The ‘medium’ model
showed a marked reduction in WER across various
datasets, including a significant drop from baseline figures
in Group A, highlighting the model's improved adaptability
to different speech patterns post-finetuning. Overall, the
average performance across Group B models illustrates the

tangible benefits of finetuning on child speech, with
improvements evident in lower WERs for a majority of the
test scenarios.

3) GROUP C

In Group C, the finetuning process incorporated the
CMU _train dataset alongside MyST train, aiming to
investigate its impact on reducing the WER for CMU _test.
Following this finetuning, there was a notable decrease in
the WER for the CMU_test dataset to as low as 2.32.
However, this adjustment resulted in increased WERS
across all other test datasets. Interestingly, the performance
on the dev-clean dataset, which represents adult speech,
remained unchanged. These outcomes hint at the acoustic
similarities between the CMU_Kids dataset and adult
speech, evidenced by the stable performance on adult
speech and increased WERs on child speech datasets. This
also suggests that the CMU_Kids dataset, while beneficial
for targeting specificities of the CMU_test, may not align
well with the acoustic properties of other child speech
datasets. The disparity in WERs could also be linked to the
inherent differences in domain or unique acoustic features
present in the non-native test datasets, which are not
sufficiently represented in the CMU_train dataset.
Furthermore, the presence of low-quality audio within the
CMU _train dataset might have adversely affected the
model's performance, particularly evident in the heightened
WERs observed in the PF_sw_test, PF_ge_test, PF_it_test,
and SO_test datasets. This indicates that while targeted
finetuning can enhance performance on specific datasets, it
also underscores the challenge of balancing improvements
across diverse speech datasets, especially when dealing
with varying audio quality and distinct acoustic
characteristics.

4) GROUP D

The decision to incorporate the PF_br_train dataset, a
British English child speech dataset, into the finetuning
process for Group D was influenced by the observed
increase in WER across nearly all test datasets (except for
the CMU_test), following the inclusion of CMU_train in
Group C. This shift also aimed to assess the impact of
PF_br_train on model performance across various speech

recognition tasks. The results from Group D finetuning
demonstrate a marked improvement across all non-native
child speech test datasets, with WER decreasing for all tests
except for the CMU_test. This suggests that the PF_br_train
dataset's characteristics are more aligned with the acoustic
properties required for effective recognition of non-native
child speech, enhancing the models' performance
significantly. The lower WERs in Group D can be
attributed to the complementary nature of the PF_br_train
dataset.
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TABLE 3
WER FOR WHISPER ORIGINAL AND FINETUNED MODELS OVER DIFFERENT CHILD SPEECH TEST DATASETS USED IN THIS PAPER
ID Models MyST _test [ PF_br_test | CMU_test | PF_sw_test | PF_ge test | PF_it_test | SO_test | Dev_clean
Group A: No-Finetuning:
1 Tiny 40.09 159.57 24.62 55.32 103.68 70.57 64.83 10.85
2 Tiny.en 33.02 47.11 16.25 45.23 89.80 47.22 51.28 8.62
3 Base 32.14 100.07 16.65 53.88 126.84 50.29 60.39 8.14
4 Base.en 29.15 45.70 15.01 37.29 93.77 46.84 38.47 7.18
5 Small 26.22 111.75 9.30 60.81 86.72 44.09 36.19 6.43
6 Small.en 26.72 39.00 8.64 32.26 71.04 33.38 30.33 6.06
7 Medium 25.11 80.97 7.48 35.07 105.82 45.65 37.00 5.58
8 Medium.en | 28.06 35.25 7.17 27.91 80.40 25.94 25.29 6.20
9 Large 25.24 84.52 7.56 33.09 79.14 51.82 37.25 5.53
10 [ Large-Vv2 25.00 73.68 6.86 29.99 77.56 34.97 29.39 5.40
Group B: MyST _train Finetuning:
11 [ Medium 11.66 19.76 9.43 34.18 62.40 24.53 24.89 5.62
12 [ Medium.en 11.81 17.83 9.13 23.63 76.84 19.99 25.45 6.48
13 [ Large-V2 12.28 10.88 9.80 25.56 65.58 23.48 25.05 4.82
Average (Group-B) | 11.91 16.15 9.45 27.79 68.27 22.67 25.13 5.64
Group C: MyST _train + CMU_train Finetuning:
14 | Medium 12.14 41.83 4.46 158.75 113.07 125.05 33.24 6.10
15 | Medium.en 12.10 31.29 2.27 138.95 125.37 77.38 33.32 6.13
16 [ Large-V2 12.37 23.62 2.32 184.24 211.01 180.79 48.34 4.81
Average (Group-C) | 12.20 32.24 3.01 160.64 149.81 127.74 38.3 5.68
Group D: MyST _train + PF_br_train Finetuning:
17 | Medium 12.22 2.98 16.05 16.52 51.53 14.08 22.80 5.40
18 [ Medium.en 12.33 3.32 15.08 17.48 59.94 13.95 23.41 4.88
19 [ Large-V2 13.34 4.17 17.11 26.55 58.37 20.24 24.94 4.97
Average (Group-D) | 12.63 3.49 16.08 20.18 56.61 16.09 23.71 5.08
Group E: MyST _train + CMU_train + PF_br_train Finetuning:
20 [ Medium 11.72 3.11 2.36 23.94 86.13 16.72 27.88 5.62
21 [ Medium.en 11.71 3.02 2.23 21.65 68.10 15.87 26.43 5.57
22 | Large-V2 12.37 3.10 1.86 43.34 71.18 56.29 32.99 4.75
Average (Group-E) | 11.93 3.07 2.15 29.64 75.13 29.62 29.10 5.31
Group F: MyST _train + PF_br_train + NN_10 Finetuning:
23 | Medium 11.73 3.15 9.33 9.12 34.59 5.10 16.02 5.33
24 | Medium.en 11.81 3.36 9.58 10.37 35.27 6.22 17.04 4.95
25 | Large-V2 12.75 7.05 9.71 8.39 33.48 5.63 16.67 5.09
Average (Group-F) | 12.09 4.52 9.54 9.29 34.44 5.65 16.57 5.12
Group G: MyST _train + PF_br_train + NN_20 Finetuning:
26 | Medium 11.96 3.12 8.92 7.74 36.21 4.16 14.40 5.39
27 | Medium.en 12.30 3.28 9.53 8.94 34.78 4.42 14.87 5.01
28 | Large-V2 11.60 3.09 9.22 7.24 31.46 3.98 13.83 4.47
Average (Group-G) | 11.95 3.16 9.22 7.97 34.15 4.18 14.36 4.95
Group H: MyST _train + CMU_train + PF_br_train + NN_10 Finetuning:
29 [ Medium 12.75 3.11 1.98 8.99 36.67 5.14 16.09 6.09
30 | Medium.en 12.35 3.42 2.06 9.04 35.92 5.84 17.55 5.28
31 | Large-V2 11.73 3.13 2.56 9.67 35.05 5.51 15.83 4.69
Average (Group-H) | 12.27 3.22 2.20 9.23 35.88 5.50 16.49 5.35
Group I: MyST_train + CMU_train + PF_br_train + NN_20 Finetuning:
31 | Medium 12.55 3.09 1.96 7.66 34.77 4.11 14.31 6.06
33 | Medium.en 11.88 3.28 1.98 8.16 34.99 4.65 15.87 5.15
34 Large-V2 11.62 2.84 1.75 8.36 34.26 4.40 14.52 4,53
Average (Group-1) | 12.01 3.07 1.89 8.06 34.67 4.38 14.9 5.25
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5) GROUP E

In the Group E experiments, we used a combination of
MyST _train, CMU_train, and PF_br_train. In comparison
to the results from Groups C and D, there is a performance
increase on all the seen datasets, however, performance
degradation can be observed on non-native datasets. This
confirms that CMU_train datasets had a negative impact on
the performance of non-native English test datasets.
Notably, the WERs for CMU_test and PF_br_test dropped
to 1.86 and 3.10, respectively, nearing human-level
accuracy. These results indicate that having a similar
distribution of data improves performance on both seen and
unseen child speech datasets. However, this improvement
also points to a potential limitation: while the models
became more proficient with data similar to their training
set, their ability to generalize across diverse linguistic
backgrounds weakened. The results underline the critical
balance needed in selecting training datasets that perform
well across a broad spectrum of speech recognition tasks.

6) GROUP F

In the Group F experiments, the finetuning included NN_10
along with the Group D training datasets. On comparing
groups D and F, the addition of this small dataset of non-
native speech resulted in significant improvements in the
performance on all non-native child speech test datasets,
while the performance on the other test datasets remained
unchanged. The addition of NN_10 also led to a decrease in
the WER on CMU_test. This demonstrates that whisper
finetuning can enhance ASR performance on non-native
child speech in a low-resource scenario and can be
extended to other multi-accented non-native child speech.

7) GROUP G

The Group G finetuning experiments substituted NN_10
with NN_20, compared to Group F. This adjustment led to
additional improvements across all non-native test datasets,
with WERs dropping by 1-3% for each test dataset relative
to the results from Group F. This further shows the benefit
of including more extensive non-native speech data in
finetuning to enhance ASR performance on non-native
child speech.

8) GROUPH

In the Group H experiments, the finetuning included
NN_10 along with the Group E training datasets.
CMU _train was included in the finetuning to see its impact
when used in conjunction with the non-native datasets. By
looking at the average WERSs, no significant difference
between groups F and H can be observed, except for the
CMU_test WER, which was expected. Surprisingly, adding
CMU _train in finetuning didn’t impact the performance on
non-native test datasets in this group.

9) GROUP |
In the Group | finetuning experiments, the NN_20 training
data was included instead of NN_10 in Group H. This
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resulted in further improvements, as WERS decreased by
between 1-3% on all test datasets compared to Group H.
Furthermore, it can be noted that the inclusion of
CMU_train in the finetuning process did not have any
noticeable effect on performance on non-native test datasets
within this group.

B. DISCUSSION

The findings of this study offer significant insights into the
feasibility of finetuning the whisper model on different
combinations of child audio data to improve child speech
recognition in both native and non-native English accents.
This section delves deeper into the nuances of model
performance, emphasizing the influence of model size, the
role of dataset-specific finetuning, and the model's
capability to adapt to diverse linguistic environments. The
analysis in this section also addresses the challenges in
accent recognition and evaluates the whisper model's
resilience to catastrophic forgetting, highlighting its
potential in the evolving field of speech recognition
technology.

1. Model Size: Smaller models (e.g., Tiny, Small) tend to
have higher WER scores compared to larger models
(e.g., Medium, Large-V2). This suggests that larger
models have a better capacity to capture and represent
speech patterns, which leads to lower WER scores at
the inference stage. It can also be seen that there is only
a 1-2% WER difference between medium, medium.en,
and large-V2 models, suggesting an upper limit to the
generalizability of models with an increase in model
size.

2. No Finetuning: For the Group-A experiments, it can be
observed that on American English test datasets, such
as MyST _test and CMU _test, the models generally had
low WERs without any finetuning, as compared to
model results on other test datasets. This implies that
American-accented child speech has acoustic
properties similar to adult speech.

3. Generalization: The models trained on the MyST_train
dataset (Groups B through 1) generally exhibit good
generalization to other test scenarios, exhibiting
relatively low WER. This suggests that the finetuned
models can effectively adapt to diverse speech
recognition tasks even when trained with a single-child
speech dataset.

4. Finetuning Impact: Finetuning the models on specific
datasets (Groups B through ) consistently leads to
improved performance compared to the models without
finetuning (Group A). This highlights the importance
of adapting models to domain-specific data for better
speech recognition.

5. Dataset Contribution: Among the finetuning datasets,
the PF_br_train dataset (used in groups D, F, and G)
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consistently  provides the  most  significant
improvements in WER scores across various test
scenarios. It indicates that incorporating a dataset with
diverse linguistic features can greatly benefit the
model's performance.

6. Limited impact of the CMU_train dataset: Finetuning
with the CMU_train dataset (Groups C and E) shows
relatively smaller improvements on test datasets as
compared to PF_br_train. This suggests that the
CMU _train dataset might not capture linguistic
features as effectively as the PF_br_train dataset.

7. Additional Data Impact: The inclusion of additional
multi-accented non-native training datasets represented
by NN_10 and NN_20 (used in Groups F, G, H, and I)
yields substantial improvements in WER scores on
non-native child speech test datasets (Group B, C, D,
and E). This implies that additional non-native training
datasets, even with amounts as low as 10% of the
unseen dataset can improve the ASR system’s
performance.

8. Language and Accent: In our experiments, various
child speech accents were used. Among the accented
speech, British, Italian, and American accents are
easier to improve on for child ASR tasks. German and
Chinese accents still posed challenges in ASR
accuracy, although small improvements were still seen.

9. Catastrophic Forgetting: The WER on adult speech
(LibriTTS “dev-clean’) remained in the range of 4-6%
for all finetuning experiments. This shows that whisper
doesn’t suffer from the catastrophic forgetting problem
[36], which appears when a model is retrained with a
different dataset than the original dataset and the effect
being a significant reduction in performance data from
the original training domain. Whisper models were
able to retain a similar WER accuracy for adult speech
while also improving the WER for child speech ASR.
This may be attributed to careful training strategies,
architectural design, and regularization techniques used
in whisper [4].

C. COMPARISON WITH PREVIOUS SOTA RESULTS

Table 4 compares the results we obtained on the various
test sets with previously reported results in the literature.
Our results show significant improvements over the
previously reported results. It is important to note, however,
that prior researchers employed varied methodologies for
data cleaning, and in the absence of a uniform standard for
this process, a direct comparison cannot be provided.
Consequently, we include these comparisons primarily to
illustrate the effectiveness of our methodology on its own
merits, rather than as a direct benchmark against previous
work. This approach allows us to highlight the significant
improvements our research contributes to the field while
acknowledging the methodological differences that exist in
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data preprocessing practices. We report relative WER
improvements between 29.7% on the MyST _test, 41.5% on
the PF_br_test, 89.1% on the CMU _test, and 85.1% on the
PF_sw_test datasets. During our research, other similar
studies with whisper finetuning were also conducted which
utilized different volumes of the MyST dataset for
finetuning and testing. The WER from these studies are
also presented in Table 4 (marked in blue) to draw a
comparison of whisper finetuning with varying volumes of
the same child speech dataset.

TABLE 4
COMPARISON OF PREVIOUSLY REPORTED WER RESULTS
WITH OUR RESULTS

Test Approach [training data] WER Relative
Data WER
improve-
ment
MyST [ -Ours [MyST_train:55 hrs] 11.62 | 29.7% over
_test -DRAFT: Self-supervised non-
[240hrs] [37] 16.53 | whisper
-Whisper-Medium [55hrs] [42] | 14.40 | models
-Whisper-Medium [125hrs] [42] | 8.61
PF_br | -Ours [PF_br_train: 10 hrs] 2.84 41.5% over
_test -Filter-based discriminative previously
autoencoder [8.4 hrs] [38] 18.77 | reported
-wav2vec2-SSL [7.4 hrs] [17] 4.86 lowest
WER
CMU | -Ours [CMU_train: 7 hrs] 1.75 89.1% over
_test -TDNN-F [54.90 hrs] [39], 16.00 | previously
-HMM-DNN [6.34 hrs] [18] 19.67 | reported
-TDNN-HMM [6.34 hrs] [40] 19.80 | lowest
-Encoder-Decoder VVC [7.28 WER
hrs] [41] 21.51
PF_sw [ -Ours [PF_sw_train: 0.24 hrs] | 7.66 85.1%
_test -HMM-DNN [4 hrs] [18] 51.58
PF_ge | -Ours [PF_ge_train: 0.68 hrs] | 34.26 | NA
_test
PF_it_ | -Ours [PF_it_train: 0.7 hrs] 4.11 NA
test
SO_te | -Ours [SO_train: 0.48 hrs] 1431 | NA
st

Note: These results are provided to show comparisons on the same
datasets. Dataset distributions used for training/testing will vary in these
papers. We used an 80:20 split for testing and training. This approach uses
only a small percentage of data for training as compared to other papers
mentioned. We did not find previously reported results on PF_ge_test,
PF_it_test, and SO_test datasets.

VI. CONCLUSION

This study aims to enhance the performance of ASR on
native and non-native English child speech datasets
available for research use. Whisper models, pretrained with
huge amounts of data, are selected as the basis of the
experimental studies conducted as part of this work. Our
work adapts these pretrained whisper models to non-native
child speech using finetuning. The effectiveness of whisper
finetuning on ASR performance is studied through various
experimental combinations of datasets. It was observed that
whisper finetuning improves the ASR performance on non-
native English children's speech, a low-resource domain.
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Additionally, our approach outperforms previously reported
results on the non-native child speech datasets used in this
paper by using only 10% distributions of these datasets
during finetuning. Best WERS on Swedish, German, Italian,
and Chinese accented non-native English child speech are
reported in this paper. Using child speech data with
different linguistic features can benefit the overall ASR
performance. German-accented speech was the most
challenging for ASR while British and American English
speech was the least challenging. It was also observed that
Whisper does not suffer from catastrophic forgetting when
finetuning on new datasets.

For future work, we aim to include more training datasets
from other low-resource languages in finetuning to further
improve on these baseline results. The influence of external
language models at the decoding stage on non-native child
speech will also be examined. We also intend to conduct a
three-way experimental analysis with wav2vec2 [3],
Whisper [4], and Conformer [2] models to study the
strengths and limitations associated with each model for
working with child speech.
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Abstract— Automatic Speech Recognition (ASR) systems
have progressed significantly in their performance on adult
speech data; however, transcribing child speech remains
challenging due to the acoustic differences in the characteristics
of child and adult voices. This work aims to explore the potential
of adapting state-of-the-art Conformer-transducer models to
child speech to improve child speech recognition performance.
Furthermore, the results are compared with those of self-
supervised wav2vec2 models and semi-supervised multi-domain
Whisper models that were previously finetuned on the same
data. We demonstrate that finetuning Conformer-transducer
models on child speech yields significant improvements in ASR
performance on child speech, compared to the non-finetuned
models. We also show Whisper and wav2vec2 adaptation on
different child speech datasets. Our detailed comparative
analysis shows that wav2vec2 provides the most consistent
performance improvements among the three methods studied.

Keywords— Child Speech Recognition, Automatic Speech
Recognition, Conformer-transducer, wav2vec2, Whisper model,
MyST, PF-STAR, CMU_Kids

1. INTRODUCTION

In the domain of Automatic Speech Recognition (ASR),
several challenges persist, such as limited training data,
untranscribed data, and difficulty in low-resource languages
and children's speech. Recent research efforts have addressed
some of these issues, leading to impressive ASR performance
for adult speech, even achieving human-level performance
[1]-[5]. However, progress in ASR for child speech has been
slower, primarily due to the scarcity of annotated child-
speech datasets required for effective training. Child speech
datasets are challenging to collect and annotate, unlike adult
speech data (as discussed in [6]). Moreover, inherent
differences between adult and child voices, including pitch,
linguistic and acoustic features, and pronunciation ability [7],
[8], further hinder the performance of ASR models on child
speech. The shorter vocal tract length and higher fundamental
frequency [9] of children's voices also contribute to the
complexity of accurately recognizing child speech.

The advantages and disadvantages of supervised and
unsupervised ASR training approaches have been observed
in recent developments, particularly in the context of child
speech recognition. Unsupervised pretraining techniques like
wav2vec2 [3] have shown significant improvements in child
ASR [10]-[12]. However, their reliance on a finetuning stage
with labeled data can limit their usefulness as they may
overfit to specific datasets and not generalize well to diverse
distributions. On the other hand, supervised learning
approaches in child ASR [13]-[15] have explored transfer
learning from adult to child speech [10], [13], [16], data
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augmentation methods [17]-[19], and weakly supervised
training [15], [16], [20]. Recent findings [21], [22] indicate
that supervised methods, involving pretraining on multiple
datasets/domains, can enhance model robustness and
generalization performance on unseen datasets. Nevertheless,
each approach presents its trade-offs in terms of adaptability
and scalability for diverse real-world speech recognition
scenarios.

In this work, we use recent State-of-the-Art (SOTA) ASR
models, Conformer-transducer for the task of child speech
recognition. We also provide a comparative analysis of this
model with our previously benchmarked results on wav2vec2
[23] and whisper [24]. Whisper is a supervised learning-based
ASR system, which uses large amounts of labeled audio data.
It uses weakly supervised pretraining beyond English-only
speech recognition to be multilingual and multitask, showing
great performance on different multilingual adult speech
datasets [4]. The wav2vec2 is a self-supervised pretraining
method for speech representations, leading to data-efficient
finetuning for downstream ASR tasks. Conformer-transducer,
combining CNNs and Transformers for end-to-end speech
recognition, offers streaming capabilities and efficient long-
range dependency modeling. While wav2vec2 is data-
efficient and Whisper and Conformer-transducer excel in real-
time processing, each model has unique strengths, making the
choice dependent on factors like performance, model size, and
application requirements. Since these models perform well on
adult speech and gave SOTA results on widely used adult
speech datasets, it was decided to use these models on
different child speech datasets. We also finetune these models
using different combinations of child speech datasets to see
the subsequent speech recognition performance on different
seen and unseen distributions of child speech datasets [25]—
[27]. Our goal is to evaluate the efficacy of these
methodologies in child speech analysis and determine their
potential for enhancing child ASR technology and developing
educational tools for children.

II. MODEL DESCRIPTION

A. Conformer-transducer [2]

The Conformer-transducer ASR model combines the
benefits of both the transformer and CNN into a single
architecture, namely the efficient global-level modeling of
long-range dependencies in audio samples introduced by self-
attention, and the finer-grained modeling of local
dependencies enabled by convolutional kernels, respectively.
The encoder network consists of a stack of Conformer blocks
replacing the Transformer blocks [28]. A Conformer block
consists of a feed-forward module followed by a multi-headed
self-attention module, a convolution module, and finally
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another feed-forward module. Half-step residual connections
always follow the feed-forward modules and a Layernorm is
added as the last step in each block. The architecture of the
Conformer encoder can be seen in Figure 1.
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Figure 1: Conformer encoder model architecture [2].

Conformer-transducer models offer an improvement in WER
for adult speech over the RNN-T and the Transformer-
transducer architectures [2]. The Conformer-transducer uses
the autoregressive transducer decoder, dropping the original
simpler LSTM decoder. For the task of ASR, using the
transducer decoder and transducer loss instead of the
Connectionist Temporal Classification (CTC) [29] reduces
incorrect spellings due to its autoregressive property, which
implicitly models the inherent dependency between predicted
output tokens, while CTC assumes that the output tokens are
conditionally independent. However, this comes at the cost of
larger GPU memory requirements for training and slower
decoding speeds. Using a transducer approach introduces two
new networks — the Decoder and the Joint model. The output
of the Conformer’s Encoder is inputted to the joint model,
along with the autoregressive decoder model’s output, and
autoregressively produces a joint probability distribution
over the known token vocabulary. At training time, the
transducer loss is calculated over the output of the joint
network.

B. Whisper [4]

Whisper represents a significant advancement in weakly
supervised pre-training, extending its capabilities to
encompass multilingual and multitask scenarios beyond
English-only speech recognition. Its strength lies in a vast
dataset comprising 680,000 hours of labeled audio, where
117,000 hours cover 96 different languages, and an additional
125,000 hours include X—en translation data, where X is a
non-English language and ‘en’ represents English translated
data. Employing a transformer-based architecture with
residual connections, the model handles an entire speech
processing pipeline, encompassing transcription, translation,
voice activity detection, alignment, and language
identification. The Whisper model operates on 80-channel
log-Mel  spectrograms, with the encoder-decoder
Transformer network featuring two convolutional layers,
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sinusoidal positional encoding, and a stacked set of
Transformer blocks. The decoder uses learned positional
embeddings and the same number of Transformer blocks as
in the encoder. A comprehensive explanation of the Whisper
architecture is available in [4].

C. wav2vec2 [3]

wav2vec 2.0 is a speech recognition model based on self-
supervised learning of speech representations through a two-
stage architecture for pretraining and finetuning. The
architecture comprises three key components: a CNN feature
extractor, a transformer-based encoder, and a quantization
module (see [3] for detailed information). During pretraining,
the model is trained on a vast dataset of unlabeled speech data
to acquire meaningful representations by capturing the
temporal and spectral characteristics of speech. This is
accomplished using a masked contrastive loss function. In the
finetuning phase, the pretrained model is further trained on a
smaller labeled dataset tailored for a specific downstream
task. Here, the last layer of the pretrained model is substituted
with a task-specific feed-forward layer, and the entire model
is finetuned by minimizing the CTC loss [29] for ASR.

D. Training Details

All models were trained on A6000 GPUs with 48GB of
memory. The architectural parameters for Whisper,
wav2vec2, and Conformer-transducer models utilized in this
study are detailed in Table I.

TABLE L ARCHITECTURE PARAMETERS FOR CONFORMER-
TRANSDUCER[2], WHISPER[4], AND WAV2VEC2 [3] MODELS
. Learning Para-
Models Layers | Width Heads
Rate meters
Conformer-Transducer Models:
Small 16 176 4 3.0 14M
Medium 16 256 4 3.0 32M
Large 17 512 8 3.0 120M
XLarge 24 1024 8 3.0 600M
Whisper Models:
Tiny 4 384 6 1.5x 107 39M
Base 6 512 8 1x103 72M
Small 12 768 12 5x10* 244M
Medium 24 1024 16 2.5x10* 769M
Large 32 1280 20 1.75x10* 1550M
wav2vec2 Models:
Base 12 768 8 5x10* 95M
Large 24 1024 16 3x10* 317M

III. CORPUS DESCRIPTION

The Conformer-transducer pretrained models are trained
on several thousand hours of English speech from diverse
resources such as Librispeech, Fisher Corpus, Switchboard-1
Dataset, WSJ-0 and WSJ-1, National Speech Corpus, VCTK,
VoxPopuli, Europarl, Multilingual Librispeech, Mozilla
Common Voice, and People's Speech. The authors of
Whisper [4] do not explicitly state the datasets used for
training their models. Nonetheless, these trained models
achieved SOTA results on various adult speech ASR datasets
[4]. The wav2vec2-base model is pretrained with 960 hours
of librispeech [30] and the wav2vec2-large model is
pretrained with 60k hours of libri-light [31] datasets. In our
study, we utilize three distinct child speech datasets and one
adult speech dataset: MyST Corpus [25], PFSTAR dataset
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[27], and CMU Kids dataset [26]. We maintain consistency
with previous research wav2vec2 [23] and Whisper [24] to
facilitate a direct comparison with the Conformer-transducer
models.

A. Dataset cleanup

The cleaning process for the text labels involved
removing abbreviations, punctuations, white spaces, and
other non-alphanumeric characters, and converting all
characters to lowercase. The audio data was modified to have
a 16Khz sampling rate and 16-bit mono channel. For
finetuning experiments, we used My Science Tutor (MyST)
Corpus [25], an American English dataset. After cleaning and
preparing this dataset according to [23], we divided 65 hours
of clean child speech into two subsets: 55 hours for training
and 10 hours for testing. Additionally, PFSTAR [27], a
collection of words spoken by British English children,
contributed 12 hours of audio, with 10 hours used for training
and 2 hours used for testing. We also utilized CMU_Kids [26]
corpus for validation-only, containing 9 hours of read-aloud
sentences by children. While these datasets may not be
extensive, they currently represent the best publicly available
child speech datasets.

B. Dataset Usage

The datasets were divided according to their usage into a
‘training’ and an ‘inference’ set. This information is
summarized in Table II.

TABLE II. DATASET USAGE
Usage Dataset Duration
Finetuning MyST 55h 55 hours
(Training) PFS_10h 10 hours
dev-clean 9 hours
Inference MyST _test 10 hours
(Testing) PFS_test 2 hours
CMU_test 9 hours

IV. EXPERIMENTS AND RESULTS
A. Codebase

The Whisper implementation used is provided here'. The
fairseq? implementation of wav2vec?2 is used for finetuning
experiments. The relevant information regarding model
training, hyperparameters, graphs/metrics, checkpoints, and
dataset availability are made available on our GitHub?. As for
Conformer, we use its Nvidia’s implementation for our
experiments?,

B. Experiments

The first set of Conformer-transducer experiments
involved evaluating the original publicly available models on
different child audio evaluation datasets mentioned in Table
IT without finetuning. The model sizes used were Small,
Medium, Large, and XLarge as mentioned in Table I. For
Whisper experiments, we use the Tiny, Base, Small, Medium,
Large, and Large-V2 models. There are two versions of each
model: one trained with multilingual data and one specifically

for the English language only (indicated by ‘.en’ in the name).
The detailed list of experiments is mentioned in [23]. For
wav2vec2 experiments, we use the ‘Base’ and ‘Large’
models which are pretrained with 960 hours of Librispeech
data [30] and 60,000 hours of Libri-light data [31]
respectively. Two models with the best performance from the
first set of experiments are selected for further finetuning,
namely, the models with the lowest WER. Finetuning
included three experimental configurations of training data:
MyST 55h, PFSTAR _10h, and MyST 55h+PFSTAR 10h
combined.

The Conformer-transducer finetuning experiments on
child speech involved finetuning only the feed-forward layers
of all the encoder’s Conformer blocks along with all layers of
the decoder and joint networks of the base models. This
decision was taken based on selecting the best result from
preliminary experiments that tested different training
hyperparameters and the finetuning of different combinations
of layers of the Conformer-transducer large model, which can
be found in the Appendix. The Adam optimizer was used
with a base learning rate of 3.0 in combination with the Noam
learning rate scheduler which linearly increased the learning
rate for the first 40,000 steps before decaying exponentially.
Greedy batch decoding was used as the token decoding
strategy and for all experiments a unigram-based sentence-
piece tokenizer with a vocabulary size of 1024 tokens was
created for each unique finetuning dataset combination. The
models were finetuned up to 500 epochs.

For whisper and wav2vec2 finetuning, the finetuning
setup was kept consistent with previously reported results on
Whisper [24] and wav2vec2 [23] approaches to provide a fair
comparative analysis. We use a learning rate of 1 x 107 for
all Whisper finetuning experiments. The wav2vec2-base was
finetuned with a learning rate of 1 x 10, while wav2vec2-
large was finetuned with a learning rate of 2.5 x 107.
Finetuning both approaches involves training the final layer
of the models and freezing all others, as described by the
respective authors. The Whisper model undergoes finetuning
by minimizing the cross-entropy objective function, whereas
wav2vec2 is finetuned by minimizing the CTC loss.

C. Results and Discussions

a) No-Funetuning Experiments: Table III shows
Word Error Rates (WERs) of original, non-finetuned
Whisper, wav2vec2, and Conformer-transducer models on
child speech evaluation datasets mentioned in Table II. No
initial finetuning was performed over these models. A general
trend of high WER on the MyST test evaluation set can be
observed across all the Whisper and Conformer-transducer
models with most hovering around the 25% mark even for the
much larger models. Only the wav2vec2 models perform
better on MyST test, displaying WERs that are
approximately 10 points lower. We use these experiments as
a baseline for further finetuning. The models with the lowest
WER were chosen for providing executing further finetuning
experiments with child speech.

'"Whisper Implementation: https://github.com/huggingface/community-
events/tree/main/whisper-fine-tuning-event

2 wav2vec2 Fairseq: https:/github.com/facebookresearch/fairseq/
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3 GitHub: https://github.com/C3Imaging/child_ast_conformer/

4Conformer-transducer: https:/github.com/NVIDIA/NeMo/
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TABLE III. WER FOR DIFFERENT NON-FINETUNED WHISPER,
WAV2VEC2, AND CONFORMER-TRANSDUCER MODELS ON CHILD SPEECH
(MYST, PFESTAR, AND CMU-KIDS) EVALUATION DATASETS

Whisper finetuning included the Medium.en and Large-V2
models while wav2vec2 finetuning involved wav2vec2-base
and wav2vec2-large models. These models were finetuned on

Name Models Mt);:;l"_ Ptl;sst— Ci\;[s?— MyST 55h, PFSTAR 10h, and a combination of both
Small 2134 | 12.68 | 16.05 datasets.
Conformer- | Medium 24.99 11.58 17.51
Transducer | Large 2591 3.94 15.06 TABLE 1V. WER ON CHILD EVALUATION DATASETS FOR DIFFERENT
X1 24.42 8.22 14.83 WHISPER, WAV2VEC2, AND CONFORMER-TRANSDUCER MODELS FINETUNED
2B : : : ON MYST, PFSTAR, AND MYST+PFSTAR-COMBINED DATASETS
Tiny 40.09 159.57 30.63
Tiny.en 33.02 47.11 27.32 MyST PFS CMU
N Model
Base 3214 | 100.07 | 25.03 ame oaels Ctest | test | test
Base.en 29.15 45.70 20.75 MyST (55 Hours) Finetuning:
. Small 26.22 111.75 18.52 Conformer- Large 14.17 44.02 27.03
Whisper =g allen 2672 | 3900 | 16.82 Transducer | XLarge 13.79 | 4357 | 20.63
Medium 25.11 80.97 12.67 Whisper Medium.en 11.81 17.83 15.07
Medium.en 28.06 35.25 14.00 P Large-V2 12.28 10.88 15.67
Large 25.24 84.52 13.70 wav2vec? wav2vec2-base 8.13 14.77 16.47
Large-V2 25.00 73.68 12.69 wav2vec2-large 7.51 12.46 15.25
avavec2 wav2vec2-base 15.41 11.20 16.33 PFSTAR (10 Hours) Finetuning:
wavive wav2vec2-large 12.50 8.56 14.85 Conformer- Large 90.00 8.58 82.00
Transducer XLarge 86.79 6.31 75.26
The Conformer-transducer Small model, which is Whisper Medium.en 15.84 3.14 | 1553
s . 5 . Large-V2 15.79 2.88 15.22
significantly smaller than Whisper’s Tiny model and five
. ller than Whi S B del f both wav2vec? wav2vec2-base 31.86 3.48 27.49
imes smaller than Whisper’s Base model outperforms bo wav2vecd-large CTRT] 350 | 2135
significantly on all three child audio evaluation sets. The MyST (55 Hours) + PFSTAR (10 Hours) Finetuning:
Conformer-transducer Medium model, comparable in size to Conformer- Large 13.86 444 ] 25.00
Whisper’s Tiny model also outperforms Whisper but does not Transducer XlLarge 13.61 43 21.21
reach the same accuracy as wav2vec2-base, which is three Whisper Medium.en 1233 | 332 | 1508
p
times bigger, though the WERs are relatively close. The large Large-V2 1334 4.17 17.11
> . ’ . wav2vec2-base 7.94 291 15.97
Conformer-transducer model again outperforms the Whisper wav2vec2 wav2vecl-large 742 599 14.18

model of roughly the same parameter size range (Whisper
Small) across all three child evaluation datasets and performs
better on PFS_test and CMU _test than wav2vec2-base while
its performance on MyST test is significantly worse than
wav2vec2-base. Conformer-transducer Xlarge model, which
is twice the size of wav2vec2-large, only performs on par
with it for PFS test and CMU _test, while again showing a
much poorer result on MyST test. XLarge model, being
slightly smaller in size than the Whisper Medium model,
slightly outperforms the Whisper Medium model on
MyST test, significantly outperforms the Whisper Medium
model on PFS_test, and does not outperform on CMU _test.

Overall, it can be observed that smaller Conformer-
transducer models perform better than their small Whisper
and wav2vec2 counterparts, while with an increase in
parameter size, the Whisper and wav2vec2 models tend to
outperform Conformer-transducer equivalents, suggesting
that the Conformer-transducer loses its generalization
capabilities with an increase in parameter size. The
Conformer-transducer ‘Large’ and ‘Xlarge’ models
demonstrated competitive performance in most cases. The
Whisper models generally exhibited higher WERs compared
to the Conformer-transducer models. However, the
‘Medium’ and ‘Large’ Whisper models showed impressive
results on all three datasets. The wav2vec2 models,
particularly the ‘wav2vec2-large’ model, achieved the lowest
WERSs among all the models evaluated.

b) Comparative analysis between Conformer-
transducer, Whisper, and wav2vec2 after finetuning:
Conformer-transducer finetuning experiments involved using
the Large and Xlarge models, selected after analyzing the
results of non-finetuned models on child evaluation datasets.
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A comparison between the Conformer-transducer, Whisper,
and wav2vec2 WERs on the same evaluation sets can be seen
in Table IV. First, a substantial increase in WER on the
PFS test and CMU test is observed for the Conformer-
transducer models finetuned on MyST_55h, while the WER
on MyST test is still higher than that for all Whisper and
wav2vec2 models. Considering that CMU test is the noisiest
evaluation dataset, it is possible that, due to the higher WER
of the Conformer-transducer on this set, the Conformer-
transducer models deal worse with noisy datasets than the
other model architectures. The results of the experiments with
child speech finetuning show that wav2vec2 finetuning using
MyST 55h resulted in lower WER compared to Whisper
finetuning on MyST _test.

Finetuning the Conformer-transducer models on PFS 10h
reduces the WER on PFS_test but again not to the same low
levels as Whisper or wav2vec2 finetuning. Meanwhile,
WERs on MyST test and CMU test is considerably higher
for the Conformer-transducer models, again suggesting poor
performance on noisier datasets. Finetuning the Conformer-
transducer on a combination of MyST _55h and PFS_10h did
not provide any improvements over the other models.
However, when comparing to single dataset finetuning, the
combined finetuning measurably improves the performance
across all three evaluation datasets, suggesting that the model
generalizes better when trained on more diverse and seen
datasets.

Even though larger models tend to perform slightly better
than their smaller counterparts, the performance gain from
using larger models might not justify the additional
computational cost and memory requirements, especially
considering that the difference in WER between these models
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is relatively small. The performance of the models is heavily
influenced by the finetuning dataset. Models finetuned on the
MyST dataset tend to perform better on the MyST test
evaluation dataset, while those fine-tuned on the PFSTAR
dataset achieve better results on the PFS test evaluation
dataset. This suggests that domain-specific finetuning is
crucial for achieving better performance on domain-specific
evaluation datasets.

Overall, the results in Table IV indicate that wav2vec2 may
be the best ASR model for finetuning on child data, as the
models are smaller and require drastically less data to train
than Whisper models which show slightly poorer or
comparable results at best. It consistently outperforms the
other models across different finetuning datasets and
evaluation datasets and achieves the lowest WER values for
both MyST and PFSTAR datasets and their combination,
indicating its effectiveness in capturing relevant speech
features and generalizing to unseen data. While wav2vec2
shows promising results, it is important to note that the table
might not cover all possible scenarios and datasets. Further
evaluation and testing on different datasets would be required
to validate the model's robustness and generalization
capabilities.

V. CONCLUSIONS

In this paper, the Conformer-transducer ASR model was
compared against the Whisper and wav2vec2 models as
approaches to improve the quality of child speech
recognition. A fair comparison was conducted by ensuring
that all models were evaluated within an identical parameter
range and trained/evaluated using the same set of datasets.
While the results show that finetuning the Conformer-
transducer did not yield lower WER scores on child
evaluation datasets compared to the Whisper or wav2vec2
finetuned models on the same datasets, there is still promise
in using smaller-sized Conformer-transducer models for
efficient low-resource deployment. The observed differences
in finetuning performance may be attributed to the
generalization capacity of the models, particularly for larger
model sizes. It was evident that non-finetuned Conformer-
transducer models had a more significant WER degradation
compared to non-finetuned Whisper and wav2vec2 models as
the model parameter size increased.

Furthermore, finetuned Conformer-transducer models
perform worse on noisier evaluation datasets than Whisper
and wav2vec2 models. Using a combination of datasets for
finetuning improved WER scores across all datasets for the
Conformer-transducer, suggesting that a more diverse
finetuning dataset is needed for the model to generalize well
to unseen data. On the other hand, when comparing non-
finetuned models at smaller sizes, the Conformer-transducer
model outperformed both the Whisper and wav2vec2 models
within a similar parameter range across all child evaluation
datasets. This indicates that Conformer-transducer models
perform optimally at smaller sizes but may face challenges in
maintaining generalization capabilities as their size increases.
Overall, wav2vec2 showed the most promising results and
can be considered to be the best ASR model for finetuning
child data among the other models.
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In future work, it is proposed to finetune the smaller
Conformer-transducer models, namely Small and Medium,
on child datasets. Additionally, more rigorous
hyperparameter sweeping could provide lower WER scores
as well as testing different decoding strategies such as beam-
search with Time Synchronous Decoding (TSD) [32] or
Alignment-Length Synchronous Decoding (ALSD) [33].
Finally, using different vocabulary sizes for the tokenizer
may be investigated.
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APPENDIX

As of date, the only approach to finetuning Conformer-
transducer models that are documented is simply training all
layers of the encoder, decoder, and joint networks. However,
we considered the possibility of finding a more optimal
approach to finetuning which would lead to lower WER
scores on the evaluation datasets. To determine the best
combination of hyperparameters and what layers of the
Conformer-transducer model to finetune for the main
experiments detailed in Section IV.C, the large model was
preliminarily fine-tuned on MyST 55h and the setup with the
lowest WER on MyST test was chosen as the finetuning
approach to use.

The first approach involved finetuning all layers of all
networks with the baseline hyperparameters recommended
by the training scripts, which use the Adam optimizer with a
learning rate of 5.0 and the Noam learning rate scheduler with
10,000 warmup steps. The lowest WER achieved on the
MyST test for this approach was 18.58%. The next approach
modified the learning rate to 2.0, which led to a decreased
WER of 16.3%. Further decreasing the learning rate to 1.0
achieved a WER of 14.55%. The next investigated approach
involved finetuning just the feed-forward layers of the
encoder network while freezing all other encoder layers, with
a 1.0 learning rate and 10,000 Noam warmup steps, achieving
a 14.21% WER. Using the Noam Hold learning rate
scheduler with a warmup of 10,000 steps and a hold 0£ 20,000
steps did not lead to improvements in WER on MyST test.
Finetuning only the final half of the feed-forward layers of
the encoder instead of all the feed-forward layers also did not
yield improvements. Finally, the best WER of 14.17% was
achieved by finetuning all the feed-forward layers of the
encoder with a learning rate of 3.0 and a Noam warmup of
40,000 steps. Note that all layers of the decoder and joint
networks were fine-tuned in all of the preliminary
experiments.
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ABSTRACT Technologies such as Text-To-Speech (TTS) synthesis and Automatic Speech Recognition
(ASR) have become important in providing speech-based Artificial Intelligence (AI) solutions in today’s Al-
centric technology sector. Most current research work and solutions focus largely on adult speech compared
to child speech. The main reason for this disparity can be linked to the limited availability of children’s
speech datasets that can be used in training modern speech Al systems. In this paper, we propose and validate
a speech augmentation pipeline to transform existing adult speech datasets into synthetic child-like speech.
We use a publicly available phase vocoder-based toolbox for manipulating sound files to tune the pitch
and duration of the adult speech utterances making them sound child-like. Both objective and subjective
evaluations are performed on the resulting synthetic child utterances. For the objective evaluation, the
similarities of the selected top adults’ speaker embeddings are compared before and after the augmentation
to a mean child speaker embedding. The average adult voice is shown to have a cosine similarity of
approximately 0.87 (87%) relative to the mean child voice after augmentation, compared to a similarity
of approximately 0.74 (74%) before augmentations. Mean Opinion Score (MOS) tests were also conducted
for the subjective evaluation, with average MOS scores of 3.7 for how convincing the samples are as child-
speech and 4.6 for how intelligible the speech is. Finally, ASR models fine-tuned with the augmented speech
are tested against a baseline set of ASR experiments showing some modest improvements over the baseline
model finetuned with only adult speech.

INDEX TERMS Adult speech datasets, child speech datasets, synthetic child speech, speech data
augmentation, CLEESE, speaker embeddings, pitch tuning, fundamental frequency.

I. INTRODUCTION technologies such as ASR [1], [2], [3], [4], [5], [6], [7], [8],

In recent years, rapid advances in Machine Learning (ML)
and Deep Neural Network (DNN) techniques, together with
tremendous increases in computational power, have led to
a significant boost in the development of speech related

The associate editor coordinating the review of this manuscript and

approving it for publication was Ganesh Naik

TTS [9], [10], [11], [12], [13], [14] and Speaker Recognition
[15], [16], [17], [18], [19] for multiple application domains.
However, most of the solutions to date focus largely on
adult speech, leading to poor performance when dealing
with children’s speech. The relatively smaller amount of
work done specifically with child speech [20], [21], [22],
[23], [24], [25], [26] has encountered significant challenges,

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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and as a result, children cannot fully benefit from some
modern speech technologies. One of the main challenges
is the limited availability of children’s speech datasets
[27], [28], [29], [30] necessary and suitable for training
speech Al models. This is in contrast to adult speech
where there is an abundance of large, publicly available
and well-annotated datasets [31], [32], [33], [34], [35], [36].
These are harvested from the vast amounts of high-quality
public data available online, including YouTube videos and
professionally recorded audiobooks. Unfortunately, these
adult datasets are not suitable for developing child-friendly
speech Al solutions due to the innate differences between
child and adult speech.

Child speech differs in multiple ways from adult speech
owing essentially to the anatomical and morphological
differences in their vocal-tract structure. Children have
shorter vocal cords, giving their voices higher fundamental
and formant frequencies compared to adults. In addition,
children may have less control over articulation and non-
linguistic aspects of speech such as prosody and therefore
child speech exhibits higher spectral and temporal variation
than adult speech [39].

On average, children also have slower speaking rates
due to having longer phoneme durations [40]. They also
exhibit higher pitch values: typically above 250Hz compared
to average pitch values of 130Hz for adult males and
220Hz for adult females [41], [42]. For these reasons, it is
important to gather and prepare good quality children’s
speech data to successfully train child-friendly speech-related
Al models. However, there are additional challenges in the
process of collecting child speech data [43], explaining the
limited number of child-speech datasets available for research
purposes.

A. EXISTING CHILD SPEECH DATASETS - DEFICIENCIES
There are some English child-speech datasets publicly
available to researchers. Some of these [28], [29] were built
using the approach of recruiting child speakers for recording
sessions in professional recording studios, while others, for
example, the MyST dataset [30] were built using a tablet
or smartphone based app to record children’s conversational
speech remotely. For the latter, audio quality is highly
dependent on the consumer device that the app runs on. All
of these datasets feature several drawbacks, which affect data
quality and introduces challenges to the use of said data in
training speech-related Al models such as ASR and TTS.
Invariably, major cleaning, filtering, annotation and other pre-
processing of the data becomes necessary. A summary of the
statistics and pros and cons of these child-speech datasets are
presented in Table 1, along with some adult speech datasets
for comparison.

A common problem with many of the child speech datasets
is that they are relatively small/short in duration, as can
be seen in Table 1, and are simply not enough in terms
of duration (hours) to train a speech model on their own.
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Another problem is the poor quality of recorded speech
samples. Some datasets are generally of poor quality due
to the recording devices and/or environments used to while
capturing the data; for examples audio samples may have too
much background noise, noise from recording gear, or very
low gain. Lastly, some datasets have several bad speech
samples.

For instance, in Table 1, MyST is the largest child dataset
and has a lot of data (approx. 393 hours) from multiple
speakers; but many of the utterances are too short or too long,
non-meaningful or indiscernible and noisy. In addition, much
of the dataset is not annotated, or annotations are of poor
quality and cannot be used for training speech models [24].

B. CHALLENGES IN BUILDING CHILD-SPEECH DATASETS
Building a clean speech dataset even for adults is not
an easy task. It requires a specially prepared environment
(recording studio), the right recording and storage devices,
as well as recruitment of speakers. Child speech data can
also be collected using this traditional method of recruiting
speaking actors for recording sessions in media studios;
however, in the case of children, additional difficulties are
introduced.

o Recruitment and data protection: The processes of
recruiting child speakers (actors) and complying with
data protection laws can be both expensive and time-
consuming and must involve the parents or legal
guardians of the children, as children cannot give their
own legal consent.

o Low concentration and short attention spans: children
have relatively lower levels of focus and shorter spans
of attention, which could cut recording sessions short.

« Poor acoustic and linguistic capabilities of the youngest
group of children.

« Poor quality of recording devices and environment.
Another approach that can be used to gather children’s speech
involves collecting audio recordings from the Internet, for
example from YouTube or through a dedicated recording
application. With this approach, a different set of challenges
are faced:

o Limited number of videos with children as main actors.

« Short video/utterance durations.

« Background noise and music

o Lack of transcriptions and annotations.

C. RATIONALE FOR THIS RESEARCH

Taking all the above challenges into consideration, there
is a need for alternative ways to build larger child speech
datasets to facilitate the development of child-friendly speech
technologies. To this end, the goal of this study is to explore
the potential of augmenting adult speech to provide additional
child-like speech samples to complement existing child-
speech datasets. The resulting synthetic child voices can
be used to generate more synthetic child speech with the
appropriate (child-like) linguistic content using a fine-tuned
TTS model.
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TABLE 1. Summary of child speech research datasets with statistics & pros and cons.

Main Statistics

Dataset - Pros Cons
T Duration No.
ype (hrs) Speakers
Noisy
My Science Tutor (MyST) [30] Child (grades 3-5) 393 1371 Large amount of data (both audio & transcripts)
Not fully transcribed
PF-STAR [27] . Clean o
(German, Italian, English Swedish) Child Approx. 65 611 Fully transcribed Small in size
CMU Kids [29] Child (Ages 6-11)  “\PProx- 76 Clean Small in size
8.9 Fully transcribed
1178 Transcribed (Scripted and Noisy
CSLU [28] Child (grades 0-10) 100 P Extremely short utterances
spontaneous) .
(single words)
LJ Speech [31] Adult (female) 25 1 Clean, fully transcribed Small in size
Librispeech [32] Adult (male & female) 982 2,484 Large amount of data, fully ;
transcribed
oo Large amount of data, clean, fully
LibriTTS [37] Adult (male & female) 586 2,456 ranscribed, TTS-ready -
VCTK [38] Adult (male & female) 44 109 Clean, fully transcribed Small in size

D. RELATED WORKS

To improve the performance of ASR models for children’s
speech, some researchers have adopted similar data augmen-
tation techniques. For example, Shahnawazuddin et al. [44]
proposed a prosody modification (i.e., pitch and speaking
rate scaling) using a Zero-Frequency Filtering based Glottal
Closure Instants (ZFF-GCI ) anchoring approach. The
authors used these modifications to introduce more variability
in order to achieve speaker independent ASR and reported
improvements in accuracy over their baseline for both adult
and child test sets (ASR).

Bhardwaj et al. [45] also used pitch and speaking rate
modification to improve performance of Punjabi ASR system
on children’s speech. It uses the ZFF-GCI method for Linear
Prediction based Pitch Synchronous Overlap and Add (LP-
PSOLA) together with speaker adaptive training and achieves
an improvement in recognition rate for Punjabi child speech.
Chen et al. [46] applied multiple modifications including
pitch, tempo, speed, and volume perturbations to both adult
and child training datasets to diversify and increase the
amount of available training data to improve child ASR.

The idea of generating synthetic child-like speech from
adult speech was explored by Singh et al. [47]. In their work,
they applied spectral modifications, namely Linear Predict-
ing Coding (LPC)-based segmental warping perturbations
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(LPC-SWP) and formant energy perturbations (FEP), to adult
data to generate child-like speech for data augmentation, and
demonstrated an improvement in WER on both children and
adult test sets when these modifications were combined with
vocal tract length perturbation (VTLP).

Most of these works used different algorithmic approaches
to apply prosody-based modifications (pitch and speaking
rate scaling) to the speech, and the modifications were applied
in a somewhat randomized manner. That is, both increasing
and decreasing adjustments were applied to the audio features
(e.g., pitch and speaking rate). In addition, the quality of the
modified speech generated was not assessed in detail.

In this work, the goal is to generate/create synthetic child-
like speech data, and we consider augmenting the pitch and
speaking rate of adult speech to achieve this using a publicly
available phase-vocoder based sound manipulation tool.
To determine the timestamps of words and spaces where the
speaking rate should be reduced, a forced alignment system
based on an ASR model is used. In addition, we employ a
speaker encoder model to visualize and compare the adults’
and children’s speaker embeddings in a common latent space
before and after modifications. The contributions of this
paper are as follows: a) exploring an alternative algorithm
approach for the modification of adult speech (to make them
more child-like through pitch and speaking rate adjustments),
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b) conducting Mean Opinion Score (MOS) studies to provide
a qualitative evaluation of the augmented/modified speech,
c) scaling the augmentation to generate large amounts
of synthetic child-like speech, d) conducting a proof-of-
concept ASR experiment (example application) to provide a
quantitative evaluation of the augmented adult speech.

The rest of this paper is organized as follows: Section II
presents foundation technologies used in this research.
Section III describes the methodology and Section IV
presents the experiments conducted. Results and discussions
are presented in Section V. Section VI shows an example
application.and finally, Section VII presents our conclusions
and future work.

Il. FOUNDATION TOOLS AND TECHNOLOGIES

To develop our augmentation pipeline, we need to use a
number of specialized tools to modify the pitch and control
the duration of speech samples. In this section we introduce
these tools, outline their features and discuss their role in the
pipeline.

Different tools were considered for the tasks defined.
The Combinatorial Expressive Speech Engine (CLEESE)
[48] was selected to implement these augmentations because
it offers a combination of ease-of-use and flexibility by
allowing transformations to be applied to specific segments
of the input speech sample where desired.

A. THE COMBINATORIAL EXPRESSIVE SPEECH

ENGINE (CLEESE)

CLEESE is a python toolkit that can be used to perform
deterministic or random transformations on input sound.
Several features of the input sound can be modified, including
the pitch, duration, and gain (amplitude). Originally designed
to generate many random variations of a single input sound,
CLEESE can also be used to perform individual and user-
determined transformations, and the transformations can be
either static or time-varying [48].

Using the phase-vocoder digital audio technique, CLEESE
first takes the Short-Time Fourier Transform (STFT) of audio
files, which decomposes each frame (segment) of the audio
file into its frequency coefficients. Then CLEESE modifies
the frames’” STFT coefficients as required. For example,
it shifts a frame’s frequency coefficients to higher frequency
positions to achieve a higher pitch [48]. After applying the
modifications, CLEESE then generates a modified time-
domain signal from the manipulated frames by applying a
variety of techniques to ensure continuity or phase-coherence
of the resulting sinusoidal components [48].

CLEESE operates by passing user-defined or random
breakpoint functions (BPFs) to a spectral processing engine
together with other parameters for processing of the sound.
The BPFs are functions that determine how transformations
vary over the duration of the sound, in other words, they
define one or more segments (time-windows) of the input
sound where specified modifications should be applied. For
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each BPF, a transformed version of the input sound is
generated.

For the pitch, time and gain transformations, the BPFs are
temporal and are specified as two-column matrices. Each
row (breakpoint) in a BPF matrix has two elements: time
and value. The time indicates where the next modification
should begin from, and the value indicates the amount of
modification to be applied. The desired transformation is
specified separately in a configuration file. With the specified
transformation, CLEESE modifies the input sound along the
corresponding dimension (pitch, time, or amplitude) while
maintaining the other dimensions constant. CLEESE can also
perform chained transformations; for example, apply pitch
shifting followed by time shifting.

B. CLEESE TRANSFORMATIONS

1) PITCH-SHIFT TRANSFORMATION

Pitch-shifting involves shifting or displacing the fundamental
frequency in a given audio frame to a different (higher/lower)
frequency. In this study, the fundamental frequencies are
shifted to higher frequency points specified in the BPFs along
with the corresponding times where the modifications should
start. To determine the new frequency point, CLEESE takes a
pitch-shift factor, a value expressed in units of cents (a cent is
one hundredth of a semitone), provided in the BPF and uses
it to compute the new frequency with respect to the original
frequency. As an example, to shift the pitch of the input audio
by 2 semitones, a pitch-shift factor of 200 cents is provided
in the BPF. Pitch-shift factors less than O cents correspond to
lowering the pitch, factors greater than O cents correspond to
raising the pitch, and a factor of O cents implies no change or
shift in pitch [48].

2) TIME-STRETCH TRANSFORMATION

The time-stretching transformation involves shifting the
audio frames from their original positions to earlier or later
points. Similarly, for the time-stretching, CLEESE takes
a time-shift factor from the given BPF and uses that to
determine the new position of a frame. A time-shift factor less
than 1 corresponds to compressing the sound, a factor greater
than 1 corresponds to stretching the sound, and a factor of
1 implies no change in the original sound duration [48]. For
example, using a time-shift factor of 2 doubles the duration of
the audio, i.e., a 3-second-long audio will become 6-seconds-
long after modification, if the modification is applied to the
full length of the input audio.

C. WAV2VEC2 FORCED ALIGNMENT SYSTEM

The wav2vec2.0 forced alignment system''? uses the
wav2vec2.0 [4] ASR model for extracting acoustic features
from the audio and estimating the frame-wise label probabil-
ities. It then constructs a Trellis matrix using the ground-truth

2

1 https://github.com/pytorch/audio/blob/main/examples/tutorials/
forced_alignment_tutorial.py
2https://pytorch.org/audiolstable/tutorials/forced_alignment_tutorial.html
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TABLE 2. The wav2vec2.0 alignment system outputs all words in an
utterance, their respective start and stop times, as well as the confidence
score for each alignment.

Confidence Word _label Start_time Stop_time
_level
0.53 SHE 0.604 0.725
0.80 HAD 0.765 0.926
1.00 A 0.967 0.987
0.84 THIN 1.108 1.430
0.80 AWKWARD 1.792 2.175
0.91 FIGURE 2.236 2.538

transcript of the utterance, which shows the probability of
the transcript’s labels at each timestep. The system then finds
the most likely path through the Trellis matrix, producing the
alignments between the ground-truth transcript’s words and
the spoken audio. The output of the forced alignment process
is the start and end timestamps for all words in an utterance
as shown in table 2.

D. SPEAKER EMBEDDINGS

A speaker embedding is simply a representation of a speaker’s
identity in the form of a fixed size vector given an utterance,
and regardless of the utterance duration. Speaker embeddings
can be plotted in an embedding vector space to visualize how
multiple speakers relate to each other. Speaker embeddings
are commonly used for speaker recognition tasks [16], [49]
and more recently, to improve multi-speaker TTS models [8].
In addition to the speaker identities, speaker embeddings may
carry information about other paralinguistic information such
as prosody or emotion and gender of a speaker.

Different approaches have been proposed to encode
speaker embeddings, and these include identity vectors
(i-vectors) [50], which are low-dimensional projections of
the differences between a speaker’s pronunciations and the
respective overall average pronunciations; (d-vectors) [51],
which are deep neural network (DNN) based and extracted
from a hidden layer of a model trained to predict speaker
identities; and x-vectors [52], which are also DNN based but
capture segment/utterance level information as well as frame-
level information by using either statistical or max-pooling
method to gather the frame level information as segment level
representation [53].

lll. METHODOLOGY

In this section, we describe the implementation of the
proposed adult-to-child speech augmentation process. The
python toolkit, CLEESE, is used to perform two key
transformations to the adult speech data with the aim of
transforming them to child-like speech. Fig. 1 shows a flow
diagram of the overall augmentation process.

First, we triage the adult speakers by comparing the cosine
similarities of their speaker embeddings to child speaker
embedding prior to the augmentation process, see Fig. 2. This
is done by computing the mean child speaker embedding as
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FIGURE 1. Flow diagram for the adult-child speech augmentation process.
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well as the mean speaker embedding per adult speaker. Each
adult speaker’s cosine similarity to the mean child embedding
is computed, and the value is compared to a threshold value
for a selection decision to be made. More details on this in
section VI, B.

Next, we apply the pitch-shifting transformation to the
utterances of the selected speakers. For each utterance, the
pitch transformation is applied to the full utterance length.
To achieve this, a BPF is created with one break point
(time: start of utterance and value: the desired pitch-shift
factor e.g. 100 cents i.e., 1 semitone). CLEESE applies the
transformation from the specified time stamp to the end
of the utterance unless another breakpoint is encountered.
Therefore, a single breakpoint (row) in the BPF modifies the
full utterance.

Next, the time-stretching transformation is applied to the
pitch-shifted utterances. To successfully stretch the desired
segments of the sound, the exact start and stop times for
the segments are needed to create the appropriate BPFs for
stretching. For this, the wav2vec2.0 based forced alignment
system is employed to align the adult speech with their
corresponding transcripts. Based on the word timestamps, the
start and end times of all “white spaces” in the utterance
are derived and used in creating BPFs for the time-stretching
transformation. The start time for each word and white space
is used as a breakpoint in the BPFs, and different stretch
factors are used for words vs whitespaces.

IV. EXPERIMENTS

The proposed techniques for augmentation were imple-
mented on an NVIDIA GeForce RTX 2080 Super GPU,
and to scale our experiments we used an NVIDIA RTX
A6000 GPU.

A. PRELIMINARY TESTS
Pitch-shift and time-stretch transformations were applied to
randomly selected subsets of two adult speech datasets: LJ
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FIGURE 2. A flow diagram for the adult speaker selection process.

speech [31] and voxcelebl [34]. Pitch-shift factors in the
range of 100 cents (1 semitone) to 800 cents (8 semitones)
were tested on both male and female speakers, and random
time-shift factors in the range of 2 to 4 were also tested. The
goal was to determine approximately the range of pitch-shift
and time-shift factors that will make sense to use in future
experiments.

The time-stretched utterances were qualitatively evaluated
by listening to them, and it was observed that a time-shift
factor of 4, which quadruples the audio length, resulted in
extremely sluggish augmented utterances, and even a factor
of 2, which doubles audio length, resulted in utterances that
were still a bit too slow. Another observation made was that
stretching the individual words in the utterance made them
sound unrealistic.

For the pitch-shift transformation, we observed that, with
the range of values (pitch-shift factors) that achieved desired
results on some of the speaker identities, other speaker
identities did not sound realistic, even after extending the
range of pitch-shift factors. From these initial tests we
determined that not all adult voices can be successfully tuned
to sound child-like.

To resolve this and allow a larger study to be conducted,
it was necessary to first triage and determine the adult
speakers whose voices are more suitable for transforming into
natural child voices. This could be achieved by projecting
both adults’ and children’s speaker embeddings into a latent
speaker embedding space for comparison.

B. INITIAL EXPERIMENTS
1) COMPARISON OF ADULTS’ AND CHILDREN’s SPEAKER
EMBEDDINGS

To compare the adults’ and children’s speaker identities,
a Generalized End-to-End (GE2E) Loss [49] based speaker
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embedding (encoder) tool known as Resemblyzer [54] was
used. It uses a d-vectors based speaker encoder model
[49] which uses the GE2E loss for optimization. It also
has multiple functionalities for visualizing and compar-
ing the extracted embeddings using the Unified Manifold
Approximation and Projection (UMAP) for dimension
reduction.

Initially, the speaker embeddings of multiple speak-
ers (both adult and children) were plotted via UMAP
with the aim of finding adult speaker embeddings clos-
est to the children’s speaker embeddings. In Fig. 3,
we show some speaker embeddings in a UMAP plot for
visualization.

All male speaker embeddings are marked with black
crosses, female speaker embeddings are marked with blue
triangles and all child speaker embeddings are marked
with red circles. The children’s embeddings cluster in a
small section of the embedding space. However, it was
challenging to accurately identify the adult speakers that
are closest or most similar to children by visual inspection.
Therefore, it was decided to perform a cosine similarity-based
comparison and select speakers with the highest similarity
values for the main augmentation experiments.

2) COMPARISON OF EMBEDDINGS BASED ON COSINE
SIMILARITY

The cosine similarity score is a number between O and 1.
A similarity of 1 means the two embeddings compared are
identical, and a similarity of 0 means they are completely
different. Firstly, we extracted the speaker embeddings for
multiple child speakers taken from the CMU kids corpus [29].
From previous research [24] as well as initial experiments
(see Fig. 3), it is known that children’s speaker embeddings
form a small cluster in the speaker embedding latent space;
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FIGURE 3. Projection of 65 Adult speaker embeddings from Librispeech: 31 male (black), 34 females (blue) and 31 child speaker embeddings

from CMU Kids.

hence, we computed the mean child speaker embedding to
represent the children embedding cluster.

Next, we took a random subset from the train-clean-100
subset of the Librispeech dataset [32] and computed an
average speaker embedding for each adult speaker, by aver-
aging the embeddings of their individual utterances. Then we
compared them to the mean child speaker embedding using
the cosine similarity metric. A flow diagram showing the flow
of this process is seen in Fig. 2.

All adult speakers whose embeddings exceeded a pre-
defined threshold of 0.65 were selected for augmentation as in
equation 1. This threshold was chosen by listening to some of
the utterances and observing their corresponding similarities.
Fig. 4 shows some examples of the cosine similarities
computed. More statistics regarding the cosine similarities
are shown in the next section.

Ov
1’

sim_score < 0.65

Dec = (D

sim_score > 0.65

where Dec is adult speaker selection decision, sim_score
is the computed cosine similarity score between an adult’s
speaker embedding and the average child speaker embedding.

3) AUGMENTATION PROCESS

Further tests were done on the selected speakers (i.e., adult
speakers whose cosine similarities exceeded the threshold)
thereafter. Two separate ranges of pitch-shift factors were
empirically chosen for the two genders. This was done by
listening to the pitch-shifted utterances and rating them in
terms of how convincingly child-like they sounded. For male
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FIGURE 4. Original cosine similarities showing how similar Librispeech
adult speakers are to mean CMU kids child speaker embedding. The
speaker gender is suffixed to the Speaker IDs.

and female speakers, the ranges of 500 to 700 cents and 100 to
300 cents were chosen respectively.

Based on the observations made about the time-stretched
utterances in the preliminary tests, it was decided to
stretch only the pauses (whitespaces) between all words
in the utterances, as well as the unusually long words,
without stretching every single word. For stretching all the
whitespaces, we first used a time-stretch factor of 2 (i.e.,
we doubled the length/duration of pauses) and then reduced
it to a time-stretch factor of 1.8 after qualitatively evaluating
a few of the augmented utterances. In addition, we identified
the unusually longer words in the utterances - that might be
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TABLE 3. Number of librispeech train-clean-100 speakers above and
below the cosine similarity threshold.

TABLE 5. Statistics of cosine similarities for librispeech train-clean-100
before and after augmentations.

Speakers Total No. speakers No. speakers below

No. above threshold threshold
All 251 121 130
Males 126 27 99
Females 125 94 31

TABLE 4. Final shift factors used for pitch and time transformations.

Transformation Shift-factors

Pitch-shift (female)
Pitch-shift (male)

100, 200, 250, 300, 350, 400 (cents)
500, 600, 700 (cents)

1.8 (for white spaces), 2.0 (for longer
words)

Time-stretch

difficult for children to pronounce - and stretched them using
a factor of 2. This was done by computing the duration of
each word and comparing it to an empirically chosen word
length threshold.

C. MAIN EXPERIMENTS

For the main experiments, we used all the data in the train-
clean-100 subset of Librispeech [32] as the adult speech
dataset. A subset of the CMU kids dataset [29] was used as
the child speaker set, specifically the Fort Pitt (FP) subset.
Firstly, the adult speakers most proximate/similar to children
in terms of speech/voice were determined by performing the
cosine similarity comparison explained in Section III, B using
the same decision threshold value of 0.65 as in the initial
experiment. Table 3 shows the number of adult speakers
above and below the cosine similarity threshold.

Once the most similar speakers were selected, the two
augmentation techniques explained in Section II, B; namely,
pitch-shifting and time-stretching transformations were
applied to all individual utterances of the selected speakers.
The same pitch-shift and time-stretch factors chosen in the
initial experiment were applied here. First, we applied the
pitch-shifting transformations and then applied the time-
stretching transformation on the output of the pitch-shifting
transformation. Table 4 shows the final shift factors used for
the pitch-shift and time-stretch transformations.

This resulted in multiple sets/folders of data per speaker,
each containing utterances augmented with different augmen-
tation parameters. Specifically, the sets of utterances differed
in terms of pitch-shift factors only, as the time-stretching
parameters were kept constant for all sets and all genders.

D. OBJECTIVE EVALUATION

In the initial experiment section, the cosine similarity value
served as a good metric to determine the proximity of adult
speaker embeddings to the average child speaker embedding.
Therefore, to objectively evaluate the augmented speech,
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Before After
Data augmentation augmentation
Mean STD Mean STD
All  above threshold 0.69 0.032 0.83 0.034
(121)
20 spkrs in MOS study 0.740 0.022 0.86 0.027
16 spkrs in MOS 0.745 0.019 0.87 0.018

it made sense to recompute the cosine similarities between
adult speakers’ average embedding (after augmentation) and
the average child embedding. After recomputing the cosine
similarities, we observed that there was a general increase
in the similarity values for all the speakers. Fig. 5 below
shows the cosine similarities of selected speakers before and
after transformations were applied. A similarity score of 1
would indicate that a speaker is exactly the same as the
average child speaker. Table 5 also shows statistical analysis
of the adult speech data before and after augmentation. Note
that the cosine similarities of all individual child speakers’
embeddings to the mean child embedding were in the range
of 0.9 to 0.973, except one child (0.837).

E. SUBJECTIVE EVALUATIONS

While the increase in the cosine similarity of an augmented
adult speaker gives a strong indication that the augmentation
pipeline is achieving its primary goal, it is not possible to
judge how realistic or intelligible the augmented voice is.
In the case of some subjects, it was noted that while the
cosine similarity was high, the corresponding speech was
occasionally distorted and unrealistic.

For this reason, it was decided to conduct a human listener
evaluation study to validate how realistic the augmented
speech from a speaker is and confirm that it remains
intelligible. Such a study can also help confirm the best
speakers and the optimal augmentation parameters to use
for individual speakers to build a larger augmented speech
dataset — a core goal of this research.

To subjectively evaluate the augmented speech samples,
the MOS [55] subjective evaluation method was applied.
MOS evaluation is widely used to evaluate speech models,
such as TTS and Voice Conversion (VC) models, by asking
human evaluators to rate various aspects of speech quality
such as naturalness, intelligibility, similarity, etc.

1) DESIGN OF MOS STUDY

There were three specific goals for the study: i) Determine
the optimal pitch-shift factor per speaker, ii) Determine how
realistic (convincingly child-like) the augmented utterances
sound and iii) Determine whether the augmented utterances
are distorted beyond understanding or if they remain intelli-
gible. To achieve the goals of the study, three questions that
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FIGURE 5. Increases in cosine similarity between adult and child speaker embeddings after pitch shifting and time stretching.

capture the information required were chosen and presented
to the evaluators.

For the first goal, evaluators were provided with multiple
variations per utterance and asked to select the most child-
like sounding one. The difference between the variations are
the pitch-shift factors used in the pitch-shift transformation.
The sample selected for the first question is used in the
remaining questions. Secondly, evaluators were asked to rate
the selected sample in terms of how convincingly child-like
or how realistic it sounds on a scale of 1 to 5. Note that
the linguistic contents of the utterances are adult-like and
very different from the typical linguistic content of child
speech. Evaluators were given prior notice and were asked
to disregard the adult-like linguistic content while rating the
convincingness.

Thirdly, evaluators were asked to rate the same selected
sample in terms of intelligibility on a scale of 1 to 5.
Evaluators were restricted to only 5 grading points (i.e., 1,
2, 3, 4 and 5); they were not allowed to give intermediate
scores, such as 2.5. Evaluators were also asked to identify
the gender of the speaker by choosing one of three options:
Boy, Girl and Can’t say. Finally, evaluators were also given
the option to leave comments if they had any. Table 6 shows
explanations of the scales for convincingness (question 2) and
intelligibility (question 3) following approach in [24].

With this design, a first MOS study (Study A) was
conducted on utterances augmented with the following pitch-
shift factors: 100 cents, 200 cents and 300 cents, meaning
for each utterance, there were three variations for evaluators
to choose from. After this first study was completed and
the results were processed, it was decided to conduct a
second MOS study (Study B) to refine the outcome of the
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first. In particular, we wanted to see the effect of including
utterances augmented with higher and more finely granulated
pitch-shift factors as compared to the first study: 250, 300,
350 and 400 cents. This is because in the first study, the same
variation of utterance (augmented with the highest pitch-shift
factor of 300 cents) was selected by almost every evaluator
as the most child-like for all female speakers, so the range of
pitch-shift factors to investigate clearly needed expansion.

Study A:

In the first evaluation, there was a total of 30 evaluators,
mainly drawn from an undergraduate engineering class.
These were divided into two groups of 15 evaluators.
Augmented speech samples were taken from Librispeech
speakers. 20 speakers were chosen for the MOS study, after
listening to samples from all their recording sessions to
check for noise and rate the quality. This was done after
triaging the adult speakers as described in Section III B. They
included 16 female speakers and 4 male speakers with the
highest cosine similarities and high-quality audio samples.
Each group of 15 evaluators was given a unique set of
10 different speakers to review (8 females and 2 males).
The purpose was to reduce the total number utterances per
evaluator. To diversify the phrases, each evaluator group was
further divided into 3 subgroups and each subgroup was given
a unique (randomly selected) set of 2 phrases per speaker,
resulting in a total of 20 phrases to evaluate per evaluator.
They were given three augmented samples (variations) per
phrase: A, B and C corresponding to pitch shifting factors of
100, 200 and 300 cents, respectively.

Study B

In the second evaluation study, augmented samples from
only the 16 female speakers out of the top 20 speakers
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TABLE 6. Explanation of rating scales for question 2 (convincingness) and 3 (intelligibility).

Rating (Score) Question 2: Convincingness Question 3: Intelligibility
1 Unconvincing Bad voice intelligibility and bad wor(.i corr.lp.rehensibility;
None/only a few words are intelligible.
) Slightly convincing, not very like a normal Weak voice intelligibility and weak word comprehensibility;
child’s voice more than 50% of the words unintelligible
Weak voice intelligibility but plausibl d
Plausible but not very convincing as a ea. \'/(')we intelligibility but plausible W,O " .
3 . . comprehensibility; more than 50% of words are intelligible
normal child’s voice . .
but require significant concentration.
4 Quite convincing, sounds very close to a Mediocre but plausible intelligibility and comprehensibility;
child’s voice most words intelligible and relatively easy to identify.
5 Very convincing, sounds exactly like a Good intelligibility and comprehensibility; All words are

child’s voice

quite clear and comprehensible.

TABLE 7. Summary of the data distribution for mos studies a and b.

Study A Study B
Total no. of Evaluators 30 60
Subgroups 1 I 1 I
No. of Evaluators 15 15 30 30
No. of Male IDs 2 2 - -
No. of Female IDs 8 8 8 8

(the same speakers as in the first study) were evaluated.
There were 60 evaluators, again mostly engineering students,
divided into 2 main groups of 30 evaluators. Each group was
further divided into 3 subgroups of 10 students, similar to the
approach used in Study A. This time, each evaluator received
16 phrases from 8 speakers: two phrases per speaker as in
the first evaluation. Specifically, there were four variations
per utterance/phrase: A, B, C and D corresponding to pitch
shifting factors of 250, 300, 350 and 400 cents, respectively.
Information about evaluators for the two MOS studies is
presented in Table 7.

V. RESULTS AND DISCUSSION

In Section III, we described our adult-to-child speech
augmentation experiments using the two augmentation tech-
niques described in Section II, with a goal of making the adult
voices sound child-like. We also conducted two MOS studies
to evaluate the quality of the synthetic child-like speech.
In this section, we present and discuss the results of our
experiments.

Tables 8 and 9 show the results obtained from the
first and second MOS studies, respectively. More detailed
presentations of the MOS evaluation results are shown
in Tables 12 and 13 in the Appendix. The results of
the subjective evaluation showed that the utterances of
adult female speakers consistently ranked with higher
scores for intelligibility and significantly higher scores for
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TABLE 8. Mean and standard deviation (std) of convincingness and
intelligibility MOS scores (C-MOS and 1-MOS) from Study A.

Speakers No. C-MOS (STD) I-MOS (STD)
Female 16 3.37(0.37) 4.32(0.20)
Male 4 1.76 (0.37) 3.87(0.39)
All 20 3.05 (0.75) 4.23(0.30)

TABLE 9. Mean and standard deviation (std) of convincingness and
intelligibility MOS Scores (C-MOS and I-MOS) from Study B.

Speakers No.  C-MOS (STD) -MOS (STD)

Females 16 3.70 (0.35) 4.36 (0.25)

TABLE 10. Details of the synthetic and original data used in finetuning.

Finetuning data Adult/child Orig/Synt Duration(hrs)
Original 12h Adult Orig 12
Augmented_17h Child Synt 17
Original 220h Adult Orig 220
Augmented 311h Child Synt 311
MyST 55h Child Orig 55

convincingness. We had anticipated this result as only 4 males
ranked in the top 20 speakers from Librispeech train-clean-
100. It is clear that female speakers offer a better starting point
to build synthetic child voices than male speakers.

As shown in both Table 12 and Table 13, the optimal pitch-
shifting factors for the female speakers lie in the range of
300 to 400 cents. Augmenting the pitch above this range
causes the augmented speech to sound more chipmunk-like
rather than child-like. For the male speakers, the pitch-shift
factor of 600 cents was selected for 3 out of 4 speakers but the
augmented speech were unconvincing as child voices, with a
very low average MOS score of 1.76.
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TABLE 11. WER of ASR models finetuned with synthetic and original speech data.

. . . WER WER WER WER
Model Group Pretraining Finetuning dataset
MyST_10h PFS_10h CMU_%h Devclean Sh

1 Librispeech Original_12h 19.95 25.10 18.95 5.78
2 Group A Librispeech Augmented 17h 20.11 20.48 19.14 6.58
3 Librispeech Original 12h + Augmented 17h 18.17 18.11 16.07 5.49
4 Librispeech MyST _55h 8.13 17.67 16.47 7.72
5 Librispeech MyST_55+Original 12h 8.10 16.76 15.45 5.62

Group B
6 P Librispeech MyST 55h + Augmented 17h 7.98 14.015 15.02 4.87
7 Librispeech MyST 55h +Original 12h+Augmented 17h 7.95 14.85 13.92 5.54
8 Librispeech Original_220h 15.09 16.59 14.41 4.39

Group C
9 Librispeech Augmented_311h 17.42 15.86 15.09 4.83

The overall C-MOS score of the most child-like samples
was approximately 3.0 when adult male speakers were
considered, and 3.7 when only adult female speakers were
evaluated (study B). Both convincingness MOS values are
above average and implies that the augmented samples are
reasonably convincing in terms of human perception and very
convincing when only female speakers are used in the study.

A relatively higher I-MOS was obtained for the augmented
samples of both genders, showing that generating synthetic
child voices using our proposed method does not significantly
degrade the intelligibility of the original speech samples.

Note that there are limitations in going from adult speech
to child speech; for example, the linguistic content of adult
speech data is completely different from the typical linguistic
content of children’s speech. For this reason, tuning the
pitch and speaking rate of adult speech would not make the
speech sound completely natural as child speech in terms of
the linguistic content. However, these tunings can make the
voices alone sound reasonably child-like, which is the target
for the current study.

The mean cosine similarity of adult speakers after aug-
mentation was 0.83 for all speakers exceeding the similarity
threshold and 0.87 for the top 16 female speakers (see
Table 4), whereas the mean cosine similarity of the individual
child speakers was 0.94, indicating that there is still potential
to further augment the adult speakers to sound closer to child
speakers. This suggests that additional prosodic features and
paralinguistic elements could be investigated and added into
our augmentation strategy to improve the cosine similarity
score of the adult speakers.

Finally, to validate the augmented child speech data in
a practical application, we next run some ASR fine-tuning
experiments, as presented in the next section.

VI. VALIDATION OF THE AUGMENTED SPEECH:
EXAMPLE APPLICATION - ASR FINETUNING

In this section, as an example application, we conduct semi-
supervised ASR finetuning experiments with our augmented
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adult speech dataset, to show that the augmented speech
could achieve improvement over simply using additional
adult speech to finetune the ASR for child speech.

Note that the main goal of our study was to explore data
augmentations to make adult speech data sound more child-
like (i.e. closer to child speech data) in order to provide more
child-like data for training, testing and validation of ASR
and TTS models to improve their performance on real child
speech. Here, we show that finetuning a semi-supervised
ASR model with augmented adult speech data can improve
the ASR model’s performance on child speech. We show
that even when finetuned with adult-only speech data, the
performance of the model improves to an extent; however,
there is some additional improvement when the augmented
adult speech is used.

We used the state-of-the-art (SOTA) wav2vec2.0 ASR
model [3], which uses a self-supervised learning approach
and has a two-step training process. First, the model is
pretrained on a large amount on unlabeled speech, then
it is finetuned on labelled speech data for a downstream
task, such as ASR. We used a publicly available pretrained
wav2vec2.0 model, which was trained on approximately
1000 hours of unlabeled Librispeech data [32]. This model
was then finetuned with different combinations of our
augmented datasets in the various finetuning experiments as
presented in the next sub-section. The aim was to compare
the performance of an ASR model finetuned with real child
and/or adult speech versus the same model finetuned with our
augmented data (synthetic child-like speech). The Word Error
Rate (WER) metric was used to measure the performance of
the finetuned ASR models.

A. ASR FINETUNING DATASETS
We created two sets of synthetic child speech:

o Augmented_I17h: Contains augmented utterances from
the 16 female speakers of the train-clean-100 Lib-
rispeech dataset, whose speaker embeddings are most
similar to an average child embedding from the
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CMU-kids corpus by cosine similarity. The female
speakers were selected by ranking all female speakers
by their similarity score. This data totals approximately
17 hours in duration.

o Augmented_311h: Contains augmented utterances of
all female speakers in Librispeech train-clean-360,
train-clean-100, dev and test sets combined, whose
similarity score to the average real child embedding
from the CMU-kids corpus is above 0.6. This data totals
approximately 311 hours in duration.

We also used original (non-augmented) adult speech from
Librispeech [32] and real child speech data from the MyST
child speech corpus [30] for our finetuning experiments:

o Original_I2h: Contains 12 hours of original adult
speech.

e Original_220h: Contains 220 hours of original adult
speech.

e MyST _55h: Contains 55 hours of cleaned MyST child
speech, which was prepared according to [56]

The Original_12h and Original_220h sets are the orig-
inal Librispeech (adult speech) counterparts of the
Augmented_17h and Augmented_311h sets, respectively.
Note that there is an increase in the number of hours of
speech data when augmenting from Original 12h to Aug-
mented_17h and from Original_220h to Augmented_311h.
More information about the finetuning datasets can be found
in Table 10.

B. ASR FINETUNING EXPERIMENTS

To test our hypothesis of a lower WER on child test
data after finetuning on our synthetic child-like speech
data, we prepared multiple finetuning experiments. The
details of these experiments are presented in Table 11. The
experiments were divided into three groups- A, B and C.
Group-A experiments contained only the Original and Aug-
mented datasets. MyST_55h was added for the finetuning
experiments in Group-B in addition to the Original and
Augmented datasets. Group-C experiments used the com-
bined Librispeech datasets across all speakers, both original
and augmented versions. All the groups used a pretrained
wav2vec2.0 model which was pretrained on 960 hours of
Librispeech data.

We used four test datasets to test our finetuned models
at the inference stage. These datasets were prepared in
accordance with our previous research on child speech
ASR [56]. Since MyST [30] is the largest child audio
corpus available publicly for research use, it was used for
both finetuning and inference. This was done to see the
performance when finetuning and testing on similar data
distributions. We used 10 hours of MyST child speech
data, 10 hours of PFSTAR British English data [27],
9 hours of CMU-Kids American English child speech
data [29], and 9 hours of Librispeech dev-clean data
as our test datasets. Different child speech test datasets
were selected specifically to check the performance of our
finetuned models on datasets that have different acoustic
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attributes, in conjunction with adult speech also. WER values
obtained on these test datasets during inference are shown
in Table 11.

C. ASR FINETUNING RESULTS

Group-A: Finetuning with Augmented_17h resulted in a
decrease in WER on the PFS_10h data (British English
child speech), and a slight increase in WER on the other
child test sets, when compared to inference with a model
finetuned on its original speech counterpart (Original_12h).
Furthermore, combining just 17 hours of the augmented
child speech (Augmented_17h) with original adult speech
(Original_12h) leads to a slight improvement in WER
on all child test sets, as well as the adult speech test
data.

Group-B: This group uses the cleaned MyST_55h dataset
in addition to the datasets used in Group-A experiments.
Using Augmented data along with MyST child speech dataset
led to a decrease in WER on all the test datasets (see model
6 in Table 10).

Group-C: This group used datasets created from large-
scale augmentation. There was an 18.3x increase in dataset
size from Original_12h to Original_220h and from Aug-
mented_17h to Augmented_311h, respectively. Augmenta-
tion led to a decrease in WER on PFS_10h test data, but an
increase in WER for all other datasets, which is very similar
to the results of Group-A experiments.

D. DISCUSSION OF RESULTS

For Group-A, the WER decreases for all the test datasets
when both original and augmented adult speech datasets were
used for finetuning.

With MyST data inclusion in Group-B, we see a major
decrease in WER compared to Group-A results.

Furthermore, in Group-B, it can be seen that adding
augmented speech along with MyST_55h (model 6) led
to decrease in WER on all the test datasets compared to
using only MyST child speech for finetuning (model 4)
or using both MyST and original adult speech (model 5).
Also, by adding both the original and augmented speech for
finetuning (model 7), an increase in WER can be observed
on PFS_10h and adult data, while the WER on CMU_5%h is
reduced.

Using Original_220h and Augmented_311h in the Group-
C experiments did not lead to improvements in ASR per-
formance when compared with Group-B results. Comparing
models 2 and 9, with an 18x increase in the amount of
augmented data, respectively, the WER decreased by only
3.5 points on average on child speech.

While improvements in the child ASR performance were
expected, the results from the example application do not
show significant improvements using just the large amount
of synthetic child speech for finetuning. This could partly
be attributed to a lack of natural prosody in the augmented
adult data (synthetic) when compared to real child audio.
Although the synthetic speech sounds reasonably child-like in
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TABLE 12. Per speaker MOS Scores and best shift factors from 15T evaluation.

Speaker ID Tre Shift Factor Selection Count Best Shift Factor Convincingness Intelligibility
Gender 100 (A) 200 (B) 300 (C)
39 Female 1 2 27 C 3.37 4.27
40 Female 3 18 C 34 43
103 Female 4 6 20 C 3.87 4.57
198 Female 1 3 26 C 32 4.07
1183 Female 0 6 24 C 3.13 3.87
1624 Male 2 18 10 B 2.13 4.13
1737 Female 1 4 25 C 3.77 443
1898 Female 0 4 26 C 3.13 4.27
1926 Female 1 3 26 C 3.8 42
2893 Male 12 9 9 A 2.03 4.27
2007 Female 0 4 22 C 331 442
2196 Female 0 0 26 C 242 431
2764 Female 0 6 20 C 331 4.46
2910 Female 4 5 17 C 3.46 4.04
4051 Female 0 2 24 C 3.92 4.5
4340 Female 1 8 17 C 3.46 431
4680 Female 3 1 22 C 3.04 4.54
1088 Female 0 5 21 C 331 4.54
4406 Male 9 15 2 B 1.46 342
8419 Male 8 11 7 B 1.42 3.65
TABLE 13. Per speaker mos scores and best shift factors from 2NP evaluation.
Speaker ID Tre Shift Factor Sclection Count Best Shift Factor Convincingness Intelligibility
Gender 250 (A) 300 (B) 350(C) 400 (D)
39 Female 2 9 16 17 D 4.02 4.71
40 Female 10 12 14 8 C 3.75 4.61
103 Female 10 10 14 10 C 3.82 4.5
198 Female 2 8 16 18 D 3.82 4
1183 Female 9 14 10 11 B 3.11 3.95
1737 Female 4 16 11 13 B 3.79 4.34
1898 Female 5 11 19 9 C 3.20 4.45
1926 Female 4 8 19 13 C 4.16 4.61
2007 Female 4 12 13 11 C 3.85 44
2196 Female 7 8 13 12 C 34 4.675
2764 Female 7 12 6 15 D 3.63 4.13
2910 Female 7 8 13 12 C 3.78 3.9
4051 Female 8 9 14 9 C 3.98 4.35
4340 Female 9 12 9 10 B 4.1 443
4680 Female 6 9 11 14 D 3.0 43
1088 Female 8 10 10 12 D 3.83 4.48
terms of pitch and speaking rate, they are still lacking natural recordings. Features of natural child speech prosody could be
prosody characteristics such as stammering, long pauses (due modeled in addition to the proposed augmentation approach,

to uncertainty) and other features seen in real child audio which is expected to improve WER further.
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VIi. CONCLUSION AND FUTURE WORK

We have presented experiments exploring the possibility of
generating synthetic child voices by augmenting existing
adult speech datasets. Augmenting the pitch and duration of
adult speech samples generally caused them to sound more
child-like, however this worked better for the female adult
speakers as compared to the males. This observation was
further confirmed by the results of a subjective evaluation
conducted using the MOS evaluation method with a total of
72 participants. The average cosine similarity of augmented
adult speech is still lower than that of real child speakers,
therefore more research is required to improve the similarity
of augmented speech. While the improvements in the
performance of finetuned ASR models on real child speech
are relatively small, they provide a validation of the approach
which can be further improved with a more sophisticated set
of augmentations. These are planned for future work.

We have scaled this data augmentation process to provide
a large amount of synthetic child speech suitable for training
child-friendly TTS, VC and ASR models and the data, along
with pipeline implementation code, will be made publicly
available to other researchers who wish to replicate our
approach.

In future experiments, we plan to investigate and apply
other tuning techniques to better augment the adult male
voices as well as improve the existing augmentation tech-
niques to better suit the linguistic content on a sentence-by-
sentence basis. We also plan to investigate methods that take
the natural child prosody or paralinguistic feature modeling
into consideration; this could contribute to further increasing
the similarity of the augmented adult (synthetic child) speech
to real child speech.

APPENDIX
See Tables 12 and 13.
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Abstract—An overview is given of the DAVID Smart-Toy
platform, one of the first Edge-Al platform designs to
incorporate advanced low-power data processing by neural
inference models co-located with the relevant image or audio
sensors. There is also on-board capability for in-device text-to-
speech generation. Two alternative embodiments are presented
—a smart Teddy-bear and a roving dog-like robot. The platform
offers a speech-driven user interface and can observe and
interpret user actions and facial expressions via its computer
vision sensor node. A particular benefit of this design is that no
personally identifiable information passes beyond the neural
inference nodes thus providing inbuild compliance with data
protection regulations.

Keywords—smart-toy, speech user interface, neural networks,
Edge-Al, privacy-by-design, human-computer interface

I. INTRODUCTION

Edge-Al is an emerging concept implying a migration of
computational intelligence and associated data processing
from cloud repositories to occur closer to the source of data.
In some interpretations, it implies data processing on a local
smartphone or hub device, but the ultimate goal of Edge-Al
is on-device processing. Typically, the artificial intelligence
element is a neural model that leverages recent advances in
processing images, speech, or other raw sensor data sources.
However, as the capabilities of most embedded inference
chipsets are relatively limited and still require significant
compute power [1], [2] most designs implement quite limited
or specific functionality [3]. The inference requirements of
advanced computer vision and automated speech models
further limit the capabilities of Edge-Al implementations [2],
[4]-[6]. Fortunately a new generation of specialized neural
accelerators [7]-[9] are capable of running larger neural
models and even combinations of models, as we shall see.

Data privacy has also become a significant consideration,
especially for consumer devices and services [10]-[13]. More
specifically, smart-toys have led to much controversy when
they collect personally identifiable data from children [14],
[15]. Clearly, privacy is of particular importance when
dealing with children. Thus, data security has been a primary
concern for the platform and a key design requirement was to
eliminate sending any data that might be considered
personally identifiable beyond the sensor nodes. Due to the
scope of the General Data Protection Regulations (GDPR)
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in the European field [16]. This implies that all image or
speech data should be processed on the sensor boards.

II. SYSTEM DESIGN AND ARCHITECTURE OVERVIEW

The DAVID project required a large-scale development
effort over three years, so it is not feasible to capture the many
details of the design, test, and final implementation of the
hardware designs. Here we present the final working system,
focusing on the key privacy-by-design aspects.

A. The ERGO Neural Accelerator

The DAVID platform design was inspired by the recent
availability of low-power inference chipsets such as ERGO
[17]. It provides ultra-low-power capabilities while
delivering significant computational capabilities — of the
order of 50 TOPS/Watt. Thus, for the smart-toy use case, a
computational loading of 2-3 TOPS is feasible for a power
budget of 50 mW - approximately the same power
consumption as two light-emitting diodes.

B. System Architecture Overview

The system hardware layout is provided in Figure I. This
comprises three dedicated inference nodes, one with an
onboard camera enabling a computer vision node; the second
with a microphone to provide an audio sensing node — the
primary function will be operating the speech interface with
the user, and the third board is linked to a speaker to enable
the smart toy to generate neural voice output. This third board
is not a sensor board but is needed to close the loop on a
speech-based user interface. This demonstrates the capability
of Edge-Al to also generate data outputs.

0.9 / \

Ergo Board 1 Optional
. Vision Communication 5G

HUB
Ergo Board 2 I 32buC
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Figure 1: System Hardware Architecture for DAVID
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These three inference boards are connected via an 12S bus
to a central, low-power microcontroller (MCU) hub. This is
also an ultra-low-power design but consumes more power
than the sensor nodes unless placed in deep shutdown mode.

C. The Hub Board

The Hub board, shown in Figure 2, was designed to
leverage the many state-of-the-art features available on
today’s  smartphones  including IMU  subsystem,
programmable wireless connectivity, and JTAG. It features an
STM32H7 low-power MCU which can support full 32-bit OS.
This was selected for his flexibility and support for all
peripherals we have considered combined with its low power
requirements. The Hub board’s main purpose is to connect the
Ergo boards and manage communication. The Hub should
only be live when the Ergo boards are sensing events that
require the Hub board to provide input to any of the
peripherals attached to it. It will be in sleep mode most of the
time. This helps to ensure very low power requirements for
the overall system platform.

TABLE 1: CONNECTIVITY, MEMORY & COMPUTATIONAL CAPABILITIES
OF THE DAVID PLATFORM (HUB + NODES)

CONNECTIVITY HUB |NODE| COMPUTATION HUB |[NODE
12S (Tx, Rx), 2C X X |Ergo, S55TOPs/Watt x3 X
MIPI and Parallel X |Arc CPU\DSP) X
SPI & QSPI X X |STM32 (Arm M7) X
GPIO (32 bit) X X |[ESP32 (Xtensa LX6) X
FTDI JTAG, UART) | X
WiFi/BT X
USB OTG X
Memory
16MB QSPI Flash X
128MB QSPI Flash X
32MB SRAM X
448 KB ROM ESP32
520 KB SRAM ESP32
SDCard X

Figure 2: Top and Bottom views of the DAVID Hub board.
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D. The Sensor Nodes

The sensor nodes are designed to leverage the capabilities
of the ERGO chipset. They feature an onboard MIPI bus to
allow for fast real-time data transfer from an onboard camera
or other high-bandwidth sensors and to allow fast data
transfers between ERGO and the onboard memory
subsystem. Each node also has built-in IMU and I/O ports to
support a range of different sensor peripherals. For the initial
DAVID proof-of-concept (PoC) three different sensor nodes
were configured:

Vision Node: This node features a wide-field QVGA
MIPI camera. This choice was made as a trade-off between
the resolution required to implement most of the computer
vision algorithms and the complexity of the neural
architectures. Most of the selected neural algorithms operate
well with QVGA input, and this allows more neural models
to be incorporated and operate in parallel. The MIPI
architecture is scalable to a higher (or lower) resolution
camera sensor as required.

Audio Node: This node features two microphone inputs —
one is a low-quality consumer-grade microphone, but a
higher quality stereo microphone is also incorporated and
used for initial demos and to gather test input data with
different quality.

Speaker Node: This node was configured with several
different digital output speakers for testing. From our
experience, it is difficult to achieve significant loudness in the
output without added amplification, but this has
consequences for power consumption. To date, we did not
find a good low-power solution and the PoC speech output
can be difficult to hear in a noisy environment. However,
ongoing improvements in sound output components from
smartphones should help solve this issue at a sensible
price/performance point in the near future.

E. The DAVID Platform

The hub board and up to three Inference nodes are
designed to be assembled into a single platform unit that can
be designed into a proof-of-concept smart toy. This is
illustrated as a block diagram in Figure 3, below. Various on-
board connectors simplify connecting the electronic platform
to externally mounted cameras, microphones, sensors,
speakers, or other equivalent peripherals that consume or
generate data. The design is intended to be as generic as
possible to facilitate incorporation into demonstrators for
different consumer devices/products. A picture of the two
sides of the hub board is shown in Figure 2, opposite.

Naturally, this platform is not intended for mass-market
manufacturing, only for proof-of-concept (PoC) designs.
Ultimately the different system components would be
incorporated into a single chip for a particular product design.
Here the selection of ARM-based MCU and mass-market
camera, microphone, and speaker peripherals will simplify
the transition from PoC to the final mass-market product. The
fully assembled system is shown in Figure 4, below.
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Figure 4: DAVID Platform — Hub with 3 Inference node daughter
boards fully assembled for placement in a smart-toy.

III. EDGE-AI MODELS AND THE SYSTEM USER INTERFACE

In this section, we take a look at the neural models
implemented on each of the node boards and discuss some of
the challenges in training and preparing neural models to run
on the DAVID platform.

A. Porting of NN Models to the Edge-AI Platform

Prior to the compilation and compression of a neural
model onto the ERGO is it important to simplify the original
neural model (or composite model if several models are to
combine on a single ERGO board). This is a complex process
and typically involves a mix of layer quantization and node
pruning. In some cases — a well-known example is the YOLO
object detection framework — there may be a range of model
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sizes (tiny, small, regular, and large models) with varying
levels of performance/complexity to provide a repeatable
starting point. Here, due to space limitations, we only
comment that this process is empirical and there is a need to
balance the desired levels of performance with the
capabilities of the ERGO tools to covert models for loading
on ERGO. In theory, any model that can run on PyTorch can
be converted, but in some cases, it was found that models
simply could not achieve acceptable levels of performance.

B. The Vision Node

This sensing node is perhaps the most advanced as it
leverages several decades of computational imaging
experience in the CTO office of Xperi [18], [19]. This node
incorporates a multi-function neural model that can perform
a range of vision tasks. An overview of one representative
version is shown in Figure 5, but this inference module can
be configured in various alternative arrangements, depending
on the specific application. Here the neural model can detect
both facial, hand, and body regions and a set of analytics is
performed on each of these. In addition, body landmarks,
hand gestures (from a fixed set of classes), and facial
characteristics are output. The facial analysis is the most
sophisticated, including orientation, a landmark mesh, facial
expression (from a fixed set of classes), and facial embedding
data that can be used to authenticate the user. All of these data
outputs are available in numeric form to the hub board but no
sensitive biometric data is exported beyond the vision node.

In addition, this example also includes a neural video
encoder that allows an encoded video stream to be set over a
secure wireless link (Bluetooth) to a parent’s phone. The
video encoding can only be viewed on a paired app running
on the phone and requires a custom decoder to view the video.
This is the only export of PID data outside of the platform
and is provided to show that secure parental access can be
provided. The functionality illustrated in Figure 5 is available
in real-time at frame rates of 30 fps. The total power cost is
100 mW. By deactivating the secure streaming functionality
this can be reduced significantly. It is worth noting that the
system architecture allows for fast reprogramming of each
Inference node. Typically each can be re-flashed with a
separate functionality in a few 10’s of milliseconds. Thus this
node could be re-flashed with a different set of functionality
to support a specific play activity or to switch between single-
player and multi-player use cases. Multiple Inference models
can be stored in flash, or uploaded via a secure app to the
system allowing for additional flexibility in the uses of the
platform.

C. The Text-to-Speech (TTS) Node

The TTS Edge Al pipeline is composed of two modules: a
spectrogram network and a vocoder. The spectrogram
network was initially adapted from the well-known Tacotron
model [20]. However, this architecture required off-node
computations in the hub MCU and the model was slow to re-
converge. Due to these challenges later versions of the TTS
model switched to explore the FastSpeech end-to-end model
[21], [22] and later several optimized versions of this model
[23]. For the Vocoder, several alternatives were explored
with the chosen architecture being HiFiGAN [24]. An
overview of TTS architectures can be found here [20].
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= Frame rate 30 fps

Encoded stream

= Resolution 320x320

= Power~100 mW

Figure 5: The multi-CNN model structure implemented in the Computer Vision Sensor Node of DAVID.

The optimized spectrogram network, shown in Figure 6,
is a fully convolutional non-autoregressive network. It
computes an intermediate log mel-scale spectrogram
representation of the whole input text in parallel. The network
takes the text characters as inputs, avoiding a separate
phoneme conversion module. The network models the
durations of the encoded characters directly prior to
upsampling them to match the spectrogram length. During
training, it uses the self-alignment module from FastPitch
[21], which removes the need for external precomputed
alignments between the text and the corresponding audio and

easily scales to new datasets.
WM Raw waveform

Conv
4
Residual Block
¥
Log mel spectrogram

Nearest Neighbours 4x
4

Residual Block
3

Nearest Neighbours 4x
4

Decoder
4

Upsample along frame dim. Residual Block
3

DurationAPrediCtOY Nearest Neighbours 8x
3

Encoder
+
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Embedding
t Log mel spectrogram

Input characters sequence

Figure 6: Left-side: The Spectrogram network diagram. Right-
side: The Vocoder generator diagram.

The vocoder follows the generator architecture of [24]
interleaving fully convolutional residual blocks with nearest
neighbor's upsampling layers. The convolutional kernel sizes
and the receptive field of the network have been tuned for
inference on the hardware at the chosen output sampling rate.
During inference, the vocoder uses a sliding window
approach to reduce activation memory. The network takes as
input non-overlapping parts of the log mel-scale spectrogram
and computes the corresponding audio waveforms, which are
then concatenated to produce the complete speech waveform.

Body Landmarks/Skeleton

Body Analytics 4
Facial Analytics2 )  Face Alignment ‘—b ‘
1051 \ \ 3_
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Both modules are trained separately. The spectrogram
network is trained by optimizing the mean-squared error
between the log mel-scale spectrogram of the predicted and
ground-truth signals as well as the alignment error. The
vocoder is trained using the loss proposed in [24].

D. The Automatic Speech Recognition Node

SpeechNet is a fully convolutional neural architecture
designed for real-time speech recognition on the ERGO
hardware. In contrast with related convolutional models in
ASR, such as Jasper [22] or QuartzNet [23] SpeechNet relies
on a considerably shorter audio context and uses small kernel
sizes. The shorter receptive field is achieved by reducing the
network depth at the expense of the layer width, where
multiple convolutions are executed in parallel, similar to the
building block of the Inception architecture [24].
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y |
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Figure 7: SpeechNetl diagram. Left: Overall structure. Right:
Zoom on a Multi-scale convolution block (MSBlock)

[80 x 266]

Y.

The basic building block of SpeechNet is shown on the
right-hand side of the diagram in Figure 7 and consists of
several Convolutional layers, each followed by Batch
Normalization (BN) and Rectified Linear Unit (ReLU) non-
linearities. For brevity, the BN and ReLU operations are not
included in the diagram. The block input x is transformed by
three different convolutional paths made of two or more
Conv-BN-ReLU blocks, each path using a different kernel
size. Furthermore, with the exception of the first MSBlock in
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the network, all MSBlocks add a residual connection from
input to output. The input feature to SpeechNet is a
normalized time-frequency log mel-scale spectrogram
representation of an audio signal. The model outputs an array
of 29 posterior probabilities defined over an inventory of 26
letters in the English alphabet, blank space, apostrophe, and
the CTC skip/BLANK token, and is trained using the
Connectionist Temporal Classification (CTC) objective
function [25] within a supervised learning framework.

For simplicity, SpeechNet uses characters as modeling
units, lessening the burden of generating richer transcriptions.
Through an appropriate parametrization of the network about
depth, kernel sizes, strides, and padding, SpeechNetl
achieves a constant algorithmic latency of 1.3 seconds,
relying on 3.325 seconds of audio context. Building upon
SpeechNet, we developed a more generic SpeechNet2
network replacing the log mel-scale spectrogram feature pre-
processor with a fully learnable convolution-based front-end.
This front-end is designed to accept audio waveforms as
inputs, which are apriori mu-law quantized on 8 bits to satisfy
the input data type requirements of the ERGO processor.

IV. SMART TOY PROOF-OF-CONCEPT

To demonstrate practical use cases for the DAVID
platform we have developed two different example use cases.
The original use case was a soft toy such as a Teddy bear that
a child can talk with and engage in different play activities. A
second example of a mobile robot was developed to take
advantage of toy mobility to enhance some of the play
activities, demonstrate additional functionality, and explore
if active mobility can help improve user engagement with the
smart toy. Here we present some technical details on how the
underlying Edge-Al platform was integrated into each PoC.

A. The DAVID Smart Teddy-Bear

The initial proof-of-concept (PoC) embodiment for the
DAVID smart toy is a Teddy-Bear, or more correctly a Panda.
This was chosen as many children have a special cuddly toy
that they develop a close attachment to. Having a toy with a
full speech interface that children can talk to (see Figure 9)
provides an interesting toy variant to test and evaluate.

Microphones

camera
Thermal
LCDs

PIR

Speaker
Contacts
Boards, battery &
sensors

Wireless charging

Figure 8: The DAVID Teddy Bear Design

From a technical perspective, it is also less challenging to
design and implement a static toy platform. For this proof-of-
concept, the focus is on providing a more sophisticated speech
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interface with interactive activities such as games and
storytelling. The bear casing is designed to be 3D printable. A
special 3D printing material is added later to provide a
synthetic soft fur over the hard casing of the final toy. The toy
platform hosts various sensing and Ul elements as shown in
Figure 8. It can be seated on a wireless charging cradle, but in
normal operation, it can run for more than 1 week on the
internal, rechargeable battery pack.

Figure 9: Testing Smart-Toy interactivity in the lab - the toy’s eyes
follow the user and can provide indications of emotional states.

B. The DAVID Mobile Rover

A second design PoC embodiment is provided by a mobile
rover. This is a pet-like platform that can move around and
execute a variety of different movement patterns, including
180 and 360-degree rotations. It also adds a head-like data
screen that can nod and antennae that can perform various
movements. These can be used to express happiness or
indicate the toy is upset or confused.

Several variants of this mobile design have been tested and
improved. This platform can employ a less sophisticated
speech interface for many demonstration tasks and games.
Simple wake words and simple speech commands can enable
interesting play experiences. As this variant of the toy mimics
a robo-pet the gameplay experiences can be simpler. Thus,
chasing a ball, or dancing while playing some music can
provide a very entertaining experience. Emotional cues can be
simpler, again mimicking a pet puppy. Many of the demo
activities for the mobile DAVID embodiment were noted by
the project team as being more fun to work on than the
sophisticated interactions expected in activities for the cuddly
toy.

V. CONCLUSIONS

The DAVID smart-toy platform provides an interesting
overview of how future Edge-Al platforms are likely to
evolve. The migration of much of the intelligence onto the
sensing nodes can allow designers and developers to focus on
the gaming or activity logic without worrying about how to
integrate computer vision algorithms or speech recognition
elements. Speech is analyzed and generated from the
underlying text representations and computer vision
algorithms can provide authentication and analysis data in
simplified forms.

Perhaps more important here are the data privacy benefits.
As both speech and face data are regarded as biometrics and
thus classified as personally identifiable data (PID) developers
would be exposed to GDPR compliance issues. By embedding

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on March 25,2024 at 16:07:00 UTC from IEEE Xplore. Restrictions apply.



the processing of this sensor data onto the ERGO node boards
this removes the need for GDPR compliance for smart-toy
designers.
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ABSTRACT A novel neural pipeline allowing one to generate pose aware 3D animated facial landmarks
synchronised to a target speech signal is proposed for the task of automatic dubbing. The goal is to
automatically synchronize a target actors’ lips and facial motion to an unseen speech sequence, while
maintaining the quality of the original performance. Given a 3D facial key point sequence extracted from
any reference video, and a target audio clip, the neural pipeline learns how to generate head pose aware,
identity aware landmarks and outputs accurate 3D lip motion directly at the inference stage. These generated
landmarks can be used to render a photo-realistic video via an additional image to image conversion stage.
In this paper, a novel data augmentation technique is introduced that increases the size of the training
dataset from N audio/visual pairs up to NxN unique pairs for the task of automatic dubbing. The trained
inference pipeline employs a LSTM-based network that takes Mel-coefficients as input from an unseen
speech sequence, combined with head pose, and identity parameters extracted from a reference video to
generate a new set of pose aware 3D landmarks that are synchronized with the unseen speech.

INDEX TERMS Machine learning, computer vision, lip synchronization, talking head generation, automatic

dubbing, audio driven deep fakes, artificial intelligence.

I. INTRODUCTION

Automatic speech dubbing is an area of great interest to
the entertainment sector as not only is it relevant to the
task of automatic dubbing for movies, television, and videos
in general, it is also applicable to speech-based animation
pipelines for video game characters, CG animated movies,
and increasingly, personal avatars within the realm of virtual
reality.

Automatic audio-visual speech dubbing is a topic which
falls under the broader field of talking head generation,
or talking heads for short. A talking head video is a video
which contains one subject talking directly to the camera. The
goal of talking head generation is either to generate a photo-
realistic talking head video from a static reference image and
target audio source (image-based methods), or in the case of
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this paper and the task of automatic dubbing / speech driven
video editing, to modify an existing video based on a new
target audio clip (video-based methods).

The meteoric rise in popularity of deep learning over the
last decade has in turn lead to a surge in interest towards
talking head generation and its associated sub tasks such
as dubbing, video editing, and video generation. Numerous
approaches have been suggested over the last five years,
each one looking to advance the state of the art within the
field of talking heads. For the vast majority of image-based
methods (where a video is generated from a single reference
image + audio), a neural network is trained to generate the lip
movements and facial expressions from audio, while a second
network is trained to generate the head pose information.
Likewise for most video-based methods (where the content
of an already existing video is modified based off the audio),
a single network is used to generate the lip movements onto
a static face mesh, which then gets fitted on top of landmarks
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extracted from each frame of the video before rendering. For
both cases, these pipelines are quite complex, and there is a
need for simpler, more intuitive approaches such that artists
can make better use of these technologies.

Speech dubbing itself is a highly complex task, as not only
does one need to generate accurate lip and jaw motion to
match the target speech signal, special care must be taken to
not diminish from the actors visual performance. Factors such
as the actors facial expressions, head movements, and man-
nerisms, must be kept as close to the original performance
as possible such that the only difference between the dubbed
video, and the original is the motion of the lips and jaw in
response to the new target audio.

The aim of this paper is to test the feasibility of a
novel 3D landmark pipeline that outputs pose, and identity
aware talking head landmarks directly in one forward pass
given an unseen target audio speech signal, and video to be
modified. This differs from other approaches in the litera-
ture which typically generate moving lips onto an identity
removing, static fixed head before aligning the lips with
the desired head pose in a later step. In these approaches
the static mesh then must be given identity specific infor-
mation such as head pose and general head movement by
either a separate network that generates artificial head pose
sequences (when generating a video from a static image),
or by extracting head pose information from the reference
video and refitting the static mesh to match it. More com-
monly when modifying video, an intermediate 3D model is
used to generate the desired facial animations, before ren-
dering back to photorealistic frames like in [1]. Typically
these methods and techniques are a lot more complex to
implement and run than landmark-based solutions. An aim
of this work therefore is to take the first steps towards a
landmark based video modifying pipeline that may serve
as a lighter, simpler, and more practical tool for animation.
To this end, two main contributions are made as part of this
work:

o A novel lightweight LSTM-Based Model capable of
generating pose and identity aware 3D landmark
sequences driven by a target audio speech signal and
source video clip.

« A novel data augmentation technique for de-correlating
lip, jaw, and head motion, making the generation of
pose-aware landmarks possible directly at inference.

The rest of this paper is organized as follows. In section 2
a review of recent relevant works in the literature is pro-
vided to give context for this paper. To this end a concise
taxonomy of papers and methods within the field of audio
driven talking head generation is presented. In section 3 the
methodology of the approach is reviewed, discussing the
contribution of the paper in depth, and detailing the data
processing methods, the network architecture, the training set
up, and experiments. In section 4 the results are presented and
discussed. In section 5 societal impact and ethical considera-
tions of the work are discussed before the conclusion of the

paper.
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Il. RELATED WORKS

Talking head generation is a topic which falls under the wider
umbrella of “Deep Fakes”, where the goal is to generate
realistic fake content of a target person. There are many
different approaches for generating “Deep Fakes”, making
a detailed literature review of the topic challenging. Here the
scope of the related works section is limited to research with
a focus on facial animation and motion driven directly from
a speech sequence - audio driven talking heads. For a more
thorough review of the literature surrounding the topic of
“Deep Fakes” the reader is directed to [2] as it provides a
comprehensive overview of the field and the main methods
for generating fake content.

Following a thorough review of the literature surrounding
audio-driven talking heads, several interesting pipelines were
identified that could be applied to the task of automatic
speech dubbing. These pipelines can be broadly classified
into two over-arching approaches: Structural approaches [1],
(31, [41, (51, [6], [71, [8], [91, [10], [11], [12], [13], [14], [15],
(161, [171, [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30] transform the input image/video and
audio into an intermediate structural representation (typically,
2D facial landmarks, or a 3D mesh) that is used as input to
a neural renderer to generate a photo-realistic talking head
sequence. Image reconstruction approaches [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41] leverage direct
image reconstruction techniques and latent feature learning
to generate a photo-realistic sequence from a target audio and
reference image/video.

While there are many approaches out there that generate
lip movements from audio such as [19], [22], [26], and [42],
none of these approaches generate pose-aware landmarks in
a single forward pass, instead generating the lip movements
onto a static face shape, introducing head movement at a later
step. In this paper it is argued that this is inefficient, and
can be done directly at inference time through a simple data
augmentation. Creating a faster pipeline, with less moving
parts, that lends itself better to real time usage.

This work is inspired by and extends the methodology
presented in [19] and [20], which are approaches that take
in a target audio clip as input, and generate fixed (no head
pose, just lip movement) 2D talking face landmarks as output.
The approach presented in this paper allows one to generate
3D talking face landmarks that maintain the head pose and
identity of the original speaker, while accurately driving the
lips from the target audio.

This work is also comparable to [22], which is an approach
used to generate talking head animations given a single target
image and audio clip. Specifically, one can compare the
model in this work to their landmark prediction network
which disentangles the audio into content and speaker iden-
tity embeddings. These embeddings are used to predict the
landmark displacements, which are then rendered into either
photo-realistic or animated frames.The approach presented
in this paper works on modifying an existing video rather
than generating a new one from a single image, and modifies
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the landmarks based on Mel Coefficients extracted from the
audio sequence that are fed into the network.

The aim of talking head generation is to generate a photo-
realistic audio driven talking head video in which the facial
movements of the talking head are naturally synchronized
with the target speech. Note that ““audio driven talking head
video™ is used as a blanket term to encompass all works
related to generating facial motions and animations driven
by audio, regardless of whether it is modifying a preexisting
video or animating a static image.

Most of the works referenced in this section, can be clas-
sified into one of two fundamental approaches for the task of
audio driven talking head generation: structural based meth-
ods [11, [3], [4], [5], [6], [71, 8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], and image reconstruction-
based methods [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41].

Structural Based Methods: These are approaches where
the input image, video, or audio are transformed into an
intermediate structural representation of some sort such as a
3D model / mesh [1], [3], [4], [51, [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15] a sequence of facial landmarks [16],
(171, [18], [19]1, [201, [21], [22], [23], [24], [25], [26], [27],
[28], [29], and more recently a sequence of dense motion
fields [18], [30]. These are then used as a training feature for
an underlying network that takes these structural sequences
as input to render a photo-realistic video. These methods are
the most relevant to this paper, specifically landmark based
ones, as this work introduces a novel way of generating pose
aware 3D facial landmark sequences from a preexisting video
sequence and target audio clip.

Image Reconstruction Methods: These are the approaches
which use pure image reconstruction techniques and latent
feature learning [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41]. One could consider these as true “End to
End” approaches, essentially passing the target image/video
and audio through a generative neural network, outputting
the synchronized talking head video directly. Other Methods:
These are approaches which do not strictly fall within the two
classes above, that are still highly relevant to this field and
worth mentioning. Approaches such as [42] and [43] which
are audio driven models trained to animate face rigs through
visemes. Or [44] that can generate dynamic neural radiance
fields from audio and using them to synthesize photorealistic
talking head videos.

It is also worth noting that each of the categories mentioned
above can be further broken down into whether they are image
or video-based methods.

e Image Based Methods: The goal is to animate a cropped
facial image given an input image/limited number of frames
as a reference, and an audio clip.

e Video Based Methods: Where the goal is to alter the
lip movements and facial expressions of an already exist-
ing video so that they are synchronized with a new audio
clip. Generally, the videos are full frame, containing the
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background, face, neck, and torso regions, not just the
cropped face, unlike the image-based methods. The work
presented in this paper is a video-based approach, as it seeks
to modify existing video based on a new target speech audio
clip.

A. LANDMARK BASED METHODS

Typically, with landmark-based methods [16], [17], [18],
[19], [20], [21], [22], [23], [24], [26], [27], [28], [29], the goal
across all approaches is to generate frame by frame a set of
predicted facial landmarks based on a reference image/video,
driven by an audio clip. The predicted landmark sequence is
then passed through a separate rendering network to generate
the photorealistic video frames required for the final output.
Figure 1 is a simplified example of what a typical pipeline
looks like, note the two main components, the landmark pre-
diction, and the frame rendering modules. As the contribution
of this paper is a novel landmark generation technique, this
section focuses discussion on the various landmark predic-
tion modules across the literature, with less emphasis on the
rendering side of things.

It stands to reason that there is a lot of variation across
approaches regarding the most effective method of construc-
tion for the landmark prediction module. Most modules in the
literature can be grouped according to the following design
choices:

e Audio input pre-processing: Some approaches take in
phoneme labels extracted from audio like in [16]. Others
extract Mel spectrograms or MFCCs from the audio first
which are then fed into the predictor such as the approaches
taken by [18], [19], [20], [23], [24], [25], [26], [28], and [29].
Audio embeddings obtained from trained speech to text mod-
ules such as the approaches employed [21] and [27] have
also been tried, along with methods that take in custom audio
embeddings such as [17] and [22]. For the approach within
this paper, mel-coefficients are extracted from the audio and
fed in as input features to the network. They were chosen as
they are quite easy to extract compared to other audio features
used by some of the approaches mentioned above, and they
are immensely popular in classical speech related tasks such
as text to speech, speaker recognition, and automatic speech
recognition.

e The underlying network architecture: Some approaches
such as [17], [19], [20], [21], [22], [23], [25], [26], and [28]
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employ a recurrent neural architecture and others such
as [16], [18], [24], [27], and [29] use feed-forward designs.
While feed-forward architectures are typically faster, a recur-
rent, Istm-based approach very similar to [19] and [22] was
chosen for this paper. The idea was that by using a recurrent
architecture, the network would learn the temporal depen-
dence associated with audio and its output lip movements,
generating a higher quality of lip movements.

e Generating the Output Landmarks: Some approaches in
the literature generate the output landmarks using a static face
mesh with moving lips that needs to then be fitted to a target
video such as [16], [17], [19], [20], [23], [26], [27], and [28]
while others such as [18], [21], [22], [24], [25], and [29]
generate the head pose information using one network, and a
second network generates the lip movements, combining both
to have a pose inclusive face mesh. This paper’s approach
differs to these as it uses a single network trained to generate
3D pose aware landmarks synchronized to audio as described
by Figure 3. This is done to simplify the overall landmark
generation pipeline for faster inference speeds, and doing so
allows for the generation of more accurate landmarks as less
information is lost through extensive normalisation of the
ground truth.

Often, the rendering modules are variations of either
CycleGAN [45] or Pix2Pix [46], which are approaches for
training a neural network for the task of image 2 image
translation. Recently however, denoising diffusion models
are becoming more and more popular for the task of image
2 image translation, and it would not be a surprise to see future
renderers incorporate the power of these generative models.
As the main contribution of this paper is a novel landmark
generation module for the task of overdubbing, no further
analysis is carried out on these modules as they fall outside
the scope of this work.

B. 3D MODEL BASED METHODS
Even though the approach presented in this paper is a land-
mark based one, it is worth briefly discussing 3D model-
based ones [1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15]. Most of these approaches follow the high-
level pipeline denoted by Figure 2 above.

Monocular reconstruction is carried out on each frame
of the target video, generating a 3D mesh for every frame.
From these meshes, pose, facial expression, and geometry
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parameters are extracted. The target audio is passed through
a specially designed ‘“‘audio to expression’ network, that can
generate blend shape expression parameters from the audio
directly. Finally, the newly generated expression parameters
are combined with the pose and geometry parameters from
the original video, in order to generate a new set of meshes.
These are then rendered back into photo-realistic frames with
the help of a neural rendering network.

C. IMAGE RECONSTRUCTION METHODS

As mentioned earlier, these are the approaches which use
pure image reconstruction techniques and latent feature learn-
ing [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
where one can feed in a reference image and target audio clip
into the network, and output a photo-realistic talking head
video. Because these are typically “End-to-End” systems,
they have several advantages over structural methods: all
parameters can be trained under one loss, they are typically
faster, and can be deployed with more ease on neural infer-
ence chips. The quality of the videos they produce however
are not as good as structural methods, and produce a lot more
artifacts, especially when dealing with more extreme head
poses. While these methods are exciting and show promising
results, it was chosen to use a structural-based method for this
paper, as the quality of the final rendered video is significantly
better, and more control over the contents of the generated
video can be exerted.

lll. METHODOLOGY

Following a detailed review of the current literature for auto-
matic dubbing, a gap was identified that provides the basis
for this work. Typically, in image-based networks, where
the goal is to generate a photo-realistic talking head video
from a single reference image and target audio, the common
approach is to have one network focus on generating the lip
movements, and another network for generating the rest of
the facial movements such as head pose, jaw movements, etc.
The outputs of both networks are then combined to generate
the fully animated facial landmark sequence like in [22].
For video-based methods, the goal is to modify a reference
video given a target audio. The approach generally involves
generating the lip movements first, before refitting them onto
a landmark sequence extracted from the reference video.

As this approach is a video modifying task for the pur-
poses of automatic dubbing, it is proposed to discard the
intermediate processing steps mentioned above entirely and
train a network to generate audio driven moving lips that
are in alignment with 3D head pose extracted from the ref-
erence video directly. An advantage to this is that the over-
all animation pipeline is faster, simpler, saves on compute,
and lends itself better to real time applications. Secondly,
due to the unique pre-processing approach employed before
training, classic normalisation techniques for this task such
as removing speaker identity and head motion are not used,
allowing the training data to maintain its structural integrity,
and therefore the network can learn to generate more accurate
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and expressive lip movements. This is evidenced by the strong
results obtained by the approach in this paper from the sub-
jective user study carried out as part of this work, comparing
the method presented in this paper, against other relevant
landmark-based techniques from the literature.

Therefore, the contributions in this paper are twofold:

1) A novel LSTM-based pipeline is introduced, that takes
as input a target speech clip along with pose and iden-
tity parameters extracted from a reference video. The net-
work outputs a pose, and identity aware 3D facial landmark
sequence with the lips synchronised to the target speech clip.
This approach works in the 3D space and does not use a static
face model to first generate the lip movements before retar-
geting them to a moving one, separating this work from other
similar approaches such as [19], [22], and [20]. The model
directly outputs lips synchronized to audio, that also follow
the head pose and movement of the speaker, simplifying the
overall pipeline.

2) A novel data augmentation method is introduced for
the pipeline training task, increasing the number of usable
audio/visual pairs during training from N pairs up to NxN
pairs, allowing the network to better learn the relationship
between audio, lip expression, and pose. More precisely,
Procrustes alignment is used to take the lip movements cor-
responding to a given audio signal and apply them to N
additional landmark sequences, essentially ending up with a
dataset where every audio sequence has N associated land-
mark sequences, each with unique head pose and movement,
but with the lips being synchronized to that respective audio
sequence. This augmentation helps when training the network
as not only does it provide additional unique data, it de-
correlates the lip movement from the rest of the face. During
early experiments it was noticed that prior to adding this
augmentation that lip movements become strongly correlated
with global facial motion and head pose. Extensive details
are provided in the data augmentation section on how to
implement this and why it is important to do so.

An objective study evaluating the accuracy of the land-
marks generated by this method against its ground truth was
carried out and compared to other approaches in the litera-
ture. Additionally, a subjective user study was also carried
out testing the quality of pose-aware landmarks versus other
approaches by asking a series of carefully thought ques-
tions for each landmark sequence tested. The results of these
experiments show it is possible to generate accurate, pose-
aware landmarks at inference that are superior than other
relevant approaches which use a static face shape and that by
simply using the Procrustes lip augmentation at train time,
one can generate accurate pose-aware landmarks using any
existing method or architecture. Details on these experiments
are provided in the results section.

To summarize, this work presents an automatic facial
dubbing network that takes in a target speech audio and a
reference facial landmark sequence as input. The network
modifies the lip displacements of the reference landmark
sequence in order to produce a new sequence whose mouth
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movements are correctly aligned with the speech audio while
maintaining the original head movements and poses of the
reference video. This is done to keep the actor’s performance
as close to the original as possible, and not to take away from
its quality in any way. See Figure 3 below as it depicts a high-
level overview of the network architecture.

A. DATA PROCESSING

1) DATA-SET SELECTION

While the end of goal of any automatic dubbing pipeline is
for it to be subject / speaker independent, for the purposes of
this paper a single speaker dataset was chosen to establish a
proof of concept and determine the different elements of the
training pipeline. Therefore, the Obama Weekly Address [47]
data-set was chosen. A collection of nearly 300 frontal full-
face videos of President Barrack Obama, consisting of over
18 hours of audio-visual content. This dataset was selected
for the following reasons:

1) It contains high quality audio, available at a frequency
of 48KHz to go with video available at several different
resolutions. For the task at hand, a video resolution of 720p
was chosen.

2) In most of the videos, President Obama is the only
speaker on video, making it very easy to isolate his facial
region using an off the shelf face detector, and extract his 3D
facial landmark co-ordinates.

3) President Obama is an ideal subject, as in his weekly
address speeches he always faces the camera, speaks clearly,
and while there is a large amount of variation in the head pose,
there are not many extremes.

The native frame rate of the dataset is 29.97 FPS. For the
experiments in this paper, the videos were down sampled
to 25FPS as it made aligning each frame of audio with its
corresponding video frame a much easier task and ensured
that no audio information would be lost, i.e., with a frame rate
of 25fps, each frame in the video would have an associated
audio sequence of 40ms. For training of the network, most of
the videos in the dataset were used, with a train/validation/test
split of 85/10/5 percent maintained. Lists of the names and
indexes of the videos, as well as pre-processing code are
available on the project GitHub page, which will be made
openly available to the public with the paper.

2) LANDMARK EXTRACTION

Initially, an off-the-shelf facial landmark extractor provided
by [48] was employed to extract 68 3D facial landmarks
from the individual frames from the videos in the dataset.
Unfortunately the quality of the predicted landmarks from
this library was found to be highly inconsistent, and to contain
a lot of global jitter that had to be eliminated using smoothing
techniques. It was found however that even small amounts of
smoothing caused the landmarks to lose fine details in the lip
motion, reducing the overall quality of the ground truth which
ultimately affected the network’s ability to generate accurate
lip motions. Due to this, it was decided to use the 468 key
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FIGURE 3. High level overview of architecture.

point face mesh extraction algorithm provided by Google’s
MediaPipe library [49]. Compared to [48], the 3D landmarks
were near perfect, and more importantly, had virtually no
global jitter present. For the sake of simplicity, 68 of the
468 keypoints that best resembled the landmarks returned by
the traditional 68 keypoint dlib extractor were chosen to use
as ground truth for training.

The landmark extraction process is very simple. First,
the videos are processed with FFMPEG to get rid of any
thumbnails at the start of the video or blank frames at the
end. Second, individual frames are extracted from the training
videos using the Open CV python library. Finally, the 468
3D landmark coordinates are extracted using the media pipe
face mesh extractor, before selecting 68 custom keypoints
that best resemble the traditional DLIB extractor to use for
training the network. This process is done for every video in
the dataset, with the code to do so available on the project
GitHub page. To prepare the data for training, the landmark
frames extracted from each video are combined such that a
matrix of shape [N, 68, 3] is created for each video, where N
is the total number of frames in that particular video.

Once the 3D facial landmarks have been extracted from
every frame in every video, the next step is to normalise all
the landmarks, and then apply a smoothing filter to get rid of
any remaining jitter present. Normalisation is done by scaling
the width of the face and centering the landmarks at the zero
point like in [22]. The Savitzky-Golay filter is then used to
smooth out the remaining jitter.

3) AUDIO FEATURE EXTRACTION

Once the videos are processed and the landmarks are
extracted, the next step is to prepare the audio for training.
The audio being used as part of the training set is single
channel, has a sampling rate of 48000 Hz and is stored as a
WAV file. Remember that since the framerate in the training
videos is 25FPS, each frame covers 0.04 seconds of audio
information.

The chosen audio features which are to be fed into the
neural network are known as Mel Coefficients. These are state
of the art features used in many related applications, most
commonly in automatic speaker/speech recognition tasks.
Reference [50] provide an in-depth explanation of what they
are and how they are computed.
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The audio signal is framed into 40ms frames, and various
experiments were carried out training the network with a
range of hop lengths starting from a hop length of size 1920
(no overlapping frames), to 960, to 480, ensuring various
degrees of overlap between audio frames. It was decided
to not use overlapping frames as no visible difference was
noticed in the accuracy of the predicted landmarks against
the original. A mel-filterbank of size 80 was also chosen.
Therefore, for a 1 second audio sequence, the resulting fea-
ture matrix would have shape (25,80).

4) ALIGNING AUDIO WITH LANDMARKS

Now that the audio and landmark features are ready, the next
step is to pair them together in preparation for training. For a
given video V that contains T number of frames is depicted
as Vr. Additionally, for the corresponding audio sequence
A, which contains T-1 audio frames, is depicted as A —1).
Notice that there is one extra video frame at the start of every
sequence which is discarded from the audio/landmark pair.
This is done as it is assumed that the audio preceding the
frame influences it, therefore there is no need to keep the first
frame in the sequence as it has no audio associated with it.
Note that this assumption is made as the data is being fed into
an Istm as a sequence, therefore the network has knowledge of
past and future frames. Had we been using an architecture that
would generate the output frame by frame, we would need to
expand the audio window to cover future frames too. This is to
ensure that facial movements caused by plosive sounds would
be correctly learnt. The first frame in the video is instead
saved as a separate entity from which the identity parameter
is extracted for its associated sequence.

The final step is to combine these audio/visual frames
into a sequence of 100 pairs for training. 100 is chosen as
it is equivalent to 4 seconds worth of audio/visual content
(25 fps x 4). This was a simple design choice influenced
by the memory constraints of the available GPU. Please see
Figure 4 below for a visual description of the alignment
process. Note how the first frames in each of the 4 second
sequences are discarded as explained above.

B. DATA AUGMENTATION
1) PROCRUSTES LIP AUGMENTATION

In this section ““Procrustes Lip Augmentation” is introduced,
a novel augmentation technique designed to increase the
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FIGURE 4. Landmark frame / audio sequence pairing process.

number of usable audio-visual pairs available during training
from N pairs up to NxN pairs, as well as decouple the rela-
tionship between the movement of a person’s lips, and the
direction, pose, and movement of their face.

Assuming one has a number of aligned audio/landmark
sequences denoted as Ag/Ly — Ay /Ly where N denotes the
total number of sequences. For a given audio sequence Ao, it’s
associated lip landmarks are extracted from the overall land-
mark sequence Ly, and inserted into every other landmark
sequence in the dataset using Procrustes Analysis. Through
this, one can obtain N sequences of landmarks, where the lip
movements are synchronized to the speech from A, while the
head poses, and head movement are all unique. By doing this,
one can successfully de-correlate the relationship between
head pose, and lip movement. The following steps depict the
process:

2) RATIONALE FOR LIP AUGMENTATION

The technique evolved from some initial experiments, where
the model was being trained on speech from a single speaker,
and having it output the aligned animated facial landmarks.
In this initial training experiment, 4 second long sequences
of audio combined with a head position vector at each frame
were fed to the network, where the role of the position vector
was to provide information about the head pose to the net-
work. The intuition was that the network would take these
inputs and use them to output the new pose aware facial land-
mark co-ordinates, with the lips being synchronised to the
audio. The idea was that the audio would drive the movement
of the lips, while the position sequence would tell the network
the direction in which the head was facing, and generate the
position of the lips on the face accordingly.

Rather than having the desired effect of outputting pose
aware facial landmarks, the network ended up treating the
audio portion of the input as noise, and completely ignoring
it. Instead, the network learned how to generate accurate lip
movements from the head position sequence alone. A number
of tests were carried out to confirm this, specifically silence
was fed into the network, along with a variety of head position
sequences to test whether the network would still generate lip
motion. The tests indicated that the network was ignoring the
audio portion of the input entirely, as in each of the tests with
silence, the generated lips would still be moving. Therefore
it was concluded that there was a strong correlation between
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FIGURE 5. Visualisation of the Procrustes lip augmentation process.
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the movement the speakers lips in the dataset, and their head
pose at any given frame.

This phenomenon led to the realization that in order to
train a network to generate audio driven lip landmarks, it is
crucial to de-correlate the relationship between the motion of
the lips, and the head pose / general movement of the face.
It is for this very reason that most approaches in the literature
employ a static face mesh during training as it allows their
models to learn the movement of the lips with respect to the
audio, without having to worry about other aspects like head
pose and facial movement. As the purpose of this work is to
output pose aware moving lips, a workaround for this issue
was necessary.

Initially it was believed that the model was overfitting on
the single speakaer dataset, and introduced a multispeaker
dataset during training to try and alleviate this issue. Despite
this, the network continued to treat the audio portion of the
input as noise, learning the lip movement from the head pose
sequence alone. It was at this point that the idea to use the
“Procrustes lip augmentation” came about. The augmenta-
tion had the desired effect, successfully de-correlating the
relationship between the head pose, and lip movement in the
training data set. This allowed the network to learn to output
3D facial landmark sequences, with the head pose controlled
by the pose sequence extracted from a reference video, and
the lip movement synchronised to and driven by the target
audio. To replicate this augmentation, please see the steps
below:

3) STEPS FOR PROCRUSTES LIP AUGMENTATION

1) Process the whole dataset as described in section 3.1,
such that you have Audio/Landmark Sequence pairs
ready.

2) ““Procrustes analysis determines a linear transformation
(translation, reflection, orthogonal rotation and scaling)
of the points in Y to best conform them to the points in
matrix X, using the sum of squared errors as the good-
ness of fit criterion” [51]. For a given audio/landmark
pair, Ao/Ly, take Ly and run Procrustes analysis against
sequence L.

133363



IEEE Access

D. Bigioi et al.: Pose-Aware Speech Driven Facial Landmark Animation Pipeline for Automated Dubbing

Generated Landmarks

Linear Layer

[ Leaky Relu
Features
| Batch Norm
) . | Linear Layer
Bi-LSTM
Leaky Relu
Identity
L Stk Batch Norm Lip Loss Face Loss
Linear Layer | L1 Loss | | L1 Loss |
| Ground Truth Facial Landmarks |
minus Lips

FIGURE 6. High level overview of model architecture.

®

TABLE 1. Detailed breakdown of the model layers displayed in figure 6 above. The input and output shapes, along with any relevant hyperparameters are

included.

Layer Name

| Input Shape | Output Shape | Number of Layers | Other Hyperparams

Bidirectional LSTM 89
Fully Connected Block: -

Linear Layer 256

Batch Normalisation Layer 256

Leaky ReLu Layer 256

Linear Layer 256
Dropout -

Batch Normalisation Layer 128

Leaky ReLu Layer 128

Linear Layer 128

256
256
256
256
128
128
128
60

4 Dropout = 0.5

Bias = True

Negative Slope = 0.2
Bias = True
p=0.5

Negative Slope = 0.2
Bias = True

e 1 e e e e

3) You will have to do it frame by frame. L is Y, and L is
X. What you obtain is the conformed sequence Lo

4) Isolate the lip landmark positions from Lo and use them
to replace the lip landmark positions in L.

5) Repeat steps 2 and 3 for the rest of the landmark
sequences in your dataset such that you end up with Ly
modified sequences that are synchronized to Ag.

6) Repeat the steps above with the rest of the audio
sequences in your dataset Aj_,y

Realistically though, one cannot do this for every single
audio sample in the dataset as the processing time would
take too long. Instead, for every audio sample, 10 random
landmark sequences were chosen to do the Procrustes lip
augmentation for, increasing the size of the training dataset
by 10 times. The number 10 was chosen as no noticeable
improvements in the accuracy of the network were discovered
by increasing this number further. In fact, even applying
the augmentation to 5 landmark sequences for every audio
clip was found to be more than enough to de-correlate the
audio from the head pose. Please see figure 5 for a visual
representation of this process.

C. NETWORK ARCHITECTURE AND TRAINING SET UP
In this section the network architecture, and training set up
of the work in this paper is discussed. With a focus on
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the choice of model, hyper-parameters, and rationale behind
certain design choices.

1) NETWORK ARCHITECTURE

The network is a very simple LSTM-based neural network,
that takes speech audio features as input combined with
a head pose sequence and identity embedding. The net-
work is trained to output the pose-aware facial landmark
co-ordinates. This is depicted by the architecture diagram
presented in Figure 6.

The audio features are sequences of Mel Coefficients span-
ning 4 seconds of audio each, as described in section 3.1.
They have a shape of (99,80). The head pose sequence is
extracted from each frame of the corresponding landmark
sequence. For each frame, the “pose” is computed from 3 co-
ordinates associated with the nose on the face. In total for a
4-second-long sequence, 99 such head pose embeddings are
obtained, having a shape of (99,3,3). The head pose sequence
array is then flattened, and concatenated with the mel coeffi-
cients array, ending up with a new training feature of shape
(99,89). Recall that the first landmark frame in the sequence
is removed as it has no equivalent audio information. This
frame is saved, and from it the identity parameter is extracted
by passing the landmarks extracted from the frame through
3 linear layers, reshaping it to be of size (1,89). This feature

VOLUME 10, 2022



D. Bigioi et al.: Pose-Aware Speech Driven Facial Landmark Animation Pipeline for Automated Dubbing

IEEE Access

is then inserted at the beginning of the training array, ending
up with a final feature shape of (100,89).

The input is then passed through a stack of 4 bidirectional
LSTMs with an input size of 89, and hidden size of 128. The
output of the LSTMs then passes through a linear layer of
in size 256, and out size 256. This then passes through a
batch normalization layer followed by a leaky ReLU layer
with a 0.2 slope coefficient. Another linear layer then takes
the embedding of size 256 as input, and outputs one of size
128. Followed by a dropout layer, and another batch norm
and leaky ReLU. Finally, one last linear layer of in size 128,
outputs an embedding of size 60. This is a flattened set of
20 lip co-ordinates. Please see table 1 for a summary of all
layer parameters.

Next, the original landmark sequence minus the lips is
concatenated with the newly generated lip co-ordinates. This
passes through a final linear layer of in size 204, out size
204 to smooth out any jitter. The output is our new set of
generated landmarks for the given audio sequence.

For training the network, L1 loss is chosen as the loss
function combined with the ADAM optimizer. Two losses
are calculated, a lip loss, and a face loss. The lip loss simply
takes the generated lips and compares them to the original
lips, while the face loss takes the entire set of landmarks and
compares them against the original. The lip loss is weighted
90 percent, while the face loss is given a weight of 10 percent.

2) TRAINING SET UP

The network is trained using a 3070-laptop edition GPU. The
training data is prepared and extracted from 200 videos of
the Obama Weekly Address dataset. The data is augmented as
described in section 3.1, for every audio sequence, 10 random
landmark sequences were chosen, and modified their lips
such that they would be synchronised for the given audio.
Ending up with 10 sequences of unique head motion per audio
sequence. The network is trained on the augmented dataset
for approximately 12 hours with a learning rate of 0.001 and
the ADAM optimizer.The batch size is set to 512, and the
Audio/Landmark sequences are shuffled for training.

IV. EXPERIMENTS AND RESULTS

In this section, the experiments and results of this paper are
presented and discussed. The results in this work are subjec-
tively compared to the results obtained by works presented
in [22] and [20] as these are the methods most relevant to
the one in this paper. It was attempted to also compare the
model to the approach taken by [17] however the authors have
not made the code necessary for this available. Additionally,
an objective comparison is also provided between the gen-
erated landmarks of this paper versus the ground truth, and
those of [19], [22], and [20] and their respective ground truth
data. Note that both [19] and [20] use the same approach for
generating landmarks. Because this work focuses on the land-
mark generation aspect of the automatic dubbing pipeline, the
evaluation is carried out on the generated landmarks. Sample
video renderings that are generated using landmarks extracted
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TABLE 2. Mean opinion score per question.

Models QI Q@ Q3 Q4f Q5l

Ground Truth 3975 3839 3961 3836 2.554
ATVG Net [20] 2.607 2982 2454 2475 3514
MakeltTalk [22] 2.65 2814 2954 2564 3.843

Proposed Approach  4.018 3986  4.029 3.929 2.554

from the approach presented in this paper are provided as a
proof of concept however a dedicated renderer to transform
the 3D landmarks back to 2D RGB frames has not been
trained, as that falls outside the scope of this paper.

A. SUBJECTIVE USER STUDY

A subjective user study was carried out, evaluating the quality
of the landmarks generated by the work in this paper, the work
in [22], and the work in [20]. Ten different videos of Pres-
ident Barrack Obama speaking were evaluated per model,
30 (3 models x 10) videos in total. Each video had length
16 seconds. Additionally, ten ground truth videos were also
evaluated as part of the study to be used as a baseline. In total,
28 subjects participated, evaluating 40 videos each. Note that
the subjects were asked to evaluate videos produced using
landmarks, and not the RGB frames. The scale of the study
was kept small as the goal was to show that generating highly
accurate, pose-aware landmarks at inference is possible, and
that the accuracy of the generated lip movements using the
method outlined in this paper is comparable to other ““static”
face based methods.

Subjects were asked to watch each of the 40 videos in
random order, and to answer 5 questions per video to evaluate
it. The subjects had a choice of 5 answers per question,
which were “Strongly Disagree”, “Disagree”, “Neutral”,
“Agree”, and ““Strongly Agree”. The subjects were not told
which approaches were used to generate the particular video
they were evaluating, nor were they told whether the video
came from the generated or ground truth set. Table 2 contains
a summary of the results, showing the mean score each model
obtained per question while figure 7 contains a more detailed
breakdown for each individual question. Note that the ques-
tions asked are listed above their respective tables. From these
results it is clear that the approach presented in this paper pro-
duces a model capable of generating audio driven pose-aware
landmarks that are near indistinguishable from the ground
truth landmarks extracted directly from video. Readers are
encouraged to view the generated videos provided in the
supplementary materials section to see the accuracy of the
model.

B. OBJECTIVE STUDY

Evaluating the the predicted landmarks in an objective man-
ner is a non-trivial task. Distance based metrics are by far
the most popular method of evaluating the predicted land-
marks against their ground truth, and some type of a distance
metric (usually L1/L2 distance) is often used as the loss
function during the training phase. As part of this work,
an objective study is carried out using the distance-based
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Q1: The motion in the video was realistic overall (lips, head motion, etc).

95% Confidence Interval

Approach Mean Std. Error
Lower Bound Upper Bound
Ground Truth 3.975 0.092 3.787 4.163
ATVG_Net 2.607 0.165 2.268 2.947
MakeltTalk 2,65 0.162 2.318 2.982
Proposed
4.018 0.099 3.815 4.221
Approach

Q2: The lip motion was synchronised well with the audio.

95% Confidence Interval

Approach Mean Std. Error
Lower Bound Upper Bound
Ground Truth 3.839 0.097 3.04 4.039
ATVG_Net 2.982 0.127 2.721 3.243
MakeltTalk 2.814 0.135 2.537 3.091
Proposed
3.986 0.082 3.818 4.153
Approach

Q3:The head motion was synchronised well with the audio.

95% Confidence Interval

Approach Mean Std. Error
Lower Bound Upper Bound
Ground Truth 3.961 0.089 3.778 4,144
ATVG_Net 2.454 0.168 2.108 2.799
MakeltTalk 2.954 0.16 2.624 3.283
Proposed
4.029 0.076 3.873 4,184
Approach

Q4:The motion appeared natural.

95% Confidence Interval

Approach Mean Std. Error
Lower Bound Upper Bound
Ground Truth 3.836 0.097 3.638 4.034
ATVG_Net 2.475 0.163 2,14 2.81
MakeltTalk 2.564 0.165 2.225 2.904
Proposed
3.929 0.054 3.735 4122
Approach

Q5: There were artefacts (distortions) in the motion.

95% Confidence Interval

Approach Mean Std. Error
Lower Bound Upper Bound
Ground Truth 2.554 0.157 2.232 2.875
ATVG_Net 3.514 0.117 3.273 3.755
MakeltTalk 3.843 0.149 3.537 4,149
Proposed
2.554 0.141 2.263 2.844
Approach

FIGURE 7. Estimated marginal means calculated for each question the
subjects answered.

metrics described by [17], comparing the accuracy in the
predicted landmarks from a range of models against their
respective ground truths. The ground truth landmarks asso-
ciated with each of the models were extracted from their
respective test sets, and pre-processed in accordance with
the instructions provided by their respective GitHub pages,
and papers. The landmark distance, and landmark velocity
difference [20], [22] functions are used to evaluate the pre-
dicted landmarks against their ground truths. The results of
these evaluations are provided for in figure 9. Like in [17],
the LD and LVD functions are used on the mouth and face
area separately. This is denoted by M-LVD, M-LD, F-LVD,
and F-LD respectively. Note that F-LD and F-LVD are very
low for this paper compared to other approaches because the
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TABLE 3. Objective evaluation results against GT.

Models M-LD|, M-LVD, FLD|, F-LVD|
ATVG Net [20] 7.111% 0.947% 7.149%  0.719%
MakeltTalk [22] 8.492% 0.391% 8.896%  0.507%

Proposed Approach ~ 3.042% 0.332% 0.178%  0.001%
BGT ATVG_Net MakeltTalk Proposed Approach

Scores

Ql Q2 Q3 Q4 Q5
Questions

FIGURE 8. Plot of mean scores each model obtained per question.

~ /

| Make It Talk | | This Paper |

FIGURE 9. Comparison of ground truth landmarks extracted from the
same frame.

model is trained with knowledge of what the face looks like,
and the direction in which the head is facing.

C. INTERPRETING RESULTS
Both the subjective and objective studies carried out as part
of this work show that the approach presented in this paper
for generating 3D pose-aware landmarks is a feasible one for
generating accurate, and expressive talking head landmarks.
It is indeed possible to generate high quality, pose-aware
landmarks at inference, without a suffering losses in the
quality of the lip synchronization. Based on the subjective
results it is clear that subjects preferred talking heads that had
identity, and pose information. While the approach presented
in this paper slightly outperforms the ground truth in most of
the question categories, this can be simply attributed to the
very high similarity between the ground truth landmarks and
generated ones. A common piece of feedback from subjects
who did the study was that they were confused why they were
shown two of the same video ( recall that the information
that one was ground truth and one was generated was not
revealed).

Additionally, it can be seen that the approach presented
in [22] outperforms [20] in categories related to overall
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motion, motion naturalness, and head motion, while scor-
ing slightly worse on lip/audio synchronization and motion
artefacts. This tracks well as [22] approach is capable of
generating realistic head motion for the landmarks, and it can
be seen from this study that subjects noticed and preferred
that over [20].

V. CONCLUSION

The goal of this paper was to introduce an approach for gen-
erating 3D pose and identity aware talking head landmarks
given a source video and driving speech signal for the task
of automatic video dubbing. It is shown throughout the paper
that this is quite feasible to do via a novel data augmentation
technique, and that subjects preferred landmarks generated by
this approach over other, existing approaches such as [20],
[22], and [19]. A number of key insights were gained by
conducting this work:

1) Generating 3D pose aware landmarks is possible, and
can be easily achieved by de-correlating the relationship
between the lips, jaw, and global head movement through the
Procrustes lip augmentation that is proposed in this work.

2) The quality of the ground truth data is much more
important over the choice of model for learning the relation-
ship between audio and lip movement. Oftentimes noisy data
needs smoothing, and smoothing leads to losing valuable lip
motion, therefore the model wont be able to learn anything
meaningful from audio. This can best be seen from the results
of the subjective study where models trained with inferior
ground truth scored poorly on metrics such as naturalness and
motion distortions.

3) By carrying out a subjective study, and surveying
28 users, it was shown how important the inclusion of head
movement information is when evaluating the quality of talk-
ing head landmarks.

As part of this work, all data-sets, code, and trained model
weights will be made available to the community.

A. FUTURE WORK

This research has opened up a number of potential avenues for
future work. At the forefront of these, is the idea to develop
a generalised pose-aware model with the capability to few-
shot learn individual speaking styles. Over the course of this
work, it was discovered that when training a landmark pre-
diction network on a single speaker, the network was robust
to generating landmarks from a wide variety of speakers.
Regardless of what speech was being input to the network,
it was observed that the network would always generate accu-
rate landmarks but in the speaking szyle of President Obama.
This indicates that it may be possible to train a generalised
model and teach it via few-shot learning techniques to output
landmarks in a specific speaker style given a very small
amount of data of that speaker.

A dedicated neural renderer for the task of landmark based
automatic dubbing is also in the works. Sample renderings
were generated using the pretrained model provided by [22]
as a proof of concept, however it does not handle extreme
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variations in the head pose very well as it is an image-
based renderer. These can be seen in the supplemental videos
section. Training of a video-based renderer is necessary to
generate the best possible results. Recent advances in gener-
ative neural networks related to diffusion models seem like a
promising avenue to explore.

Additionally there is still room to improve the lip landmark
generation, increasing its robustness to unseen speakers via
deep-learning based audio augmentation techniques such as
voice cloning, and synthetic speech generation, as well as
more classical approaches like pitch variation, time warping,
or noise addition.

B. LIMITATIONS
There are several limitations when generating pose aware
landmarks using the method presented in this paper.

1) The network does not generate realistic jaw movements
from audio. Due to the nature of the data augmentation
(de-correlating lip motion from jaw/head movement), the
network is not able to learn to also generate the correspond-
ing jaw movement from the audio. This limitation can be
overcome by computing the distance between the upper lip,
and lower lip, and raising/lowering the position of the jaw by
this amount via a simple linear equation. Alternatively, a very
simple network can be trained to solve this, consisting of just
a couple of LSTM layers as there is a very direct correlation
between lip and jaw movement that can be learnt.

2) Throughout this work it is shown that head pose is
related to audio, and a method is demonstrated to decouple
this relationship. Due to this, the approach in this paper is not
a suitable one for audio-driven video generation. Rather than
generating talking head videos from scratch, the proposed
network learns to modify an existing video, keeping the
original headpose but changing the lip content in response to
a new audio signal. This is ideal for the task of dubbing, as it
is assumed that the speech content and emotion of the dubbed
speech is similar to that of the original. Therefore it is desired
that the performance of the actor in the generated video is kept
as close to the original performance as possible, including the
head movements. However, this is a limitation, because when
inputting new speech content that doesn’t necessarily match
the original headpose, such as silence, the resulting output
will contain the original head motion, but with the lips firmly
shut. This may lead to the user perceiving the resulting video
as being “‘unnatural”, however more study in this direction is
needed.

3) The approach presented in this paper is a single speaker
approach. Because the network was trained using videos
and audio from a single speaker (President Barrack Obama),
it should not perform as well when exposed to audio from
different speakers. That being said, the network is very robust,
generating accurate and realistic landmarks from speech
coming from a wide variety of speakers who were unseen
to the network. Instead, it was observed that the speaking
“style” of the output landmarks was very similar to that
of President Obama regardless of the identity of the input
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speech. It is possible to extend this work to be a multi-speaker
network by training the network with data processed using the
same techniques as employed by the works presented by [22]
and [20] combined with the Procrustes lip augmentation.

4) Distance-based metrics are not that useful when attempt-
ing to judge the quality of landmarks generated across
different models in the literature, especially when one tries to
make a direct comparison between said models. For example,
consider model A, trained using landmarks extracted, and
normalised using pre-processing method A. The quality of
the landmarks generated by model A are only as good as
the ground truth model A was trained on. Furthermore, any
distance metric used for evaluating the landmarks, will be
calculated using the predicted landmarks, and it’s associ-
ated ground truth, therefore one cannot directly compare the
landmarks from model A and model B with distance based
metrics as they are both likely to have different methods for
extracting their ground truths. See figure 8 to see just how
different the landmarks extracted from the same frame can
be. Due to the reasons outlined above, it is entirely possible
that in a comparison between two models, A, and B, where
model A has inferior ground truth to B due to variations
in the landmark extraction process, model A could report
better scores than B even though B may look visually better.
Despite this, it is still very useful to provide distance based
comparisons between other similar models in the literature,
and their respective ground truths, as it helps one gain a rough
idea regarding the quality of their generated landmarks with
respect to other approaches.

5) As this is an approach towards generating audio driven
pose-aware landmarks, rendering the landmarks falls outside
the scope of this work. That being said, example renderings of
the landmarks generated by this approach using the pretrained
renderer from [22] are provided in the supplementary videos
section. These videos are there as a proof of concept, showing
that one can render high quality videos from the 3D pose-
aware landmarks presented in this paper.

C. FINAL REMARKS

While automated dubbing has implications for deep-fakes,
it is becoming a reality and the benefits for making enter-
tainment more readily available to a wider and more global
audience is important - this doesn’t just mean English to
other languages - it can also mean content in low-resource
languages dubbed back into more realistic English! Major
streaming companies already have a lot of non-English con-
tent so this is important for the further democratisation of
content.
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Abstract—Contemporary Human-Computer Interaction
(HCI) research relies primarily on neural network models for
machine vision and speech understanding of a system user. Such
models require extensively annotated training datasets for
optimal performance and when building interfaces for users
from a vulnerable population such as young children, GDPR
introduces significant complexities in data collection,
management, and processing. Motivated by the training needs
of an Edge-Al smart-toy platform this research explores the
latest advances in generative neural technologies and provides a
working proof-of-concept of a controllable data-generation
pipeline for speech-driven facial training data at scale. In this
context, we demonstrate how StyleGAN-2 can be fine-tuned to
create a gender-balanced dataset of children's faces. This
dataset includes a variety of controllable factors such as facial
expressions, age variations, facial poses, and even speech-driven
animations with realistic lip synchronization. By combining
generative text-to-speech models for child voice synthesis and a
3D landmark-based talking heads pipeline, we can generate
highly realistic, entirely synthetic, talking child video clips.
These video clips can provide valuable, and controllable,
synthetic training data for neural network models, bridging the
gap when real data is scarce or restricted due to privacy
regulations.

Keywords—Synthetic Data, Talking Head Generation, Text to
Speech Synthesis, Facial Image Generation, Low Resource Data

1. INTRODUCTION

In the dynamic landscape of human-centric machine
vision and speech analysis, researchers are frequently
confronted with substantial challenges stemming from GDPR
guidelines. Contemporary research heavily relies on neural
network models and the availability of extensive training
datasets to attain optimal performance. However, when the
research focus shifts to the development of Human-Computer
Interaction (HCI) interfaces and necessitates data from
vulnerable populations, particularly young children, to train
Edge-Al HCI models, GDPR introduces a myriad of
complexities associated with data collection, management,
and processing. These complexities are particularly
pronounced when dealing with real data involving children,
where stringent privacy regulations come into play.

In response to these challenges, recent advancements in
Generative Adversarial Networks (GANs) and other
generative neural technologies have emerged as promising
solutions for generating data at scale. In this context, this paper
introduces an innovative approach that leverages the power of
such technologies. Motivated by the need for training data for
an Edge-Al-based smart-toy platform [1] we demonstrate the
adaptability of StyleGAN-2 [2], [3], a state-of-the-art
generative neural architecture, to craft a gender-balanced
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dataset of synthetic children's faces. This dataset offers
nuanced control over various critical attributes, including
facial expressions, age variations, [1] facial poses, and the
synchronization of facial movements with speech-driven
animations, culminating in a collection of strikingly realistic
videos.

Going beyond visual representation, our exploration
extends into the domain of voice generation. By incorporating
techniques such as FastPitch, advanced voice augmentation,
and generative text-to-speech models, we achieve the ability
to synthesize authentic children's voices, replete with their
distinctive qualities. These voices, when seamlessly integrated
with our StyleGAN-2 framework and speech-driven neural lip
synchronization models, empower us to create highly realistic,
entirely synthetic talking child videos.

These synthetic videos represent a pragmatic solution to
data scarcity or stringent privacy regulations like GDPR. In
addition to their applications in research and development,
these videos serve as valuable training data for neural network
models in a practical use case, such as an Edge-Al smart-toy
platform. In developing these tools our focus has been on
scaling to enable controllable data generation at scale. Thus
spoken phrases can be employed in combination with a set of
synthetic voices and multiple seed faces to fine-tune the
computer vision and automated speech recognition models
that operate on the smart-toy platform. This is useful, for
example, to test how well the smart toy can detect the
emotional state of a child or respond to variations in the
command set for an interactive play activity. Gathering such
data from children and directing their responses in a controlled
laboratory environment is both time-consuming and costly.

The rest of this paper is devoted to providing a detailed
explanation of our synesthetic child media generation pipeline
starting with Section II which covers the creation of synthetic
face samples, Section III which covers the generation of
synthetic voice samples with FastSpeech 2, and Section IV
which details how videos are created using MakeltTalk.
Section V offers details on our experimental setup, with
Section VI concluding the contents of this work.

II. AN OVERVIEW OF CHILDGAN

The first step includes generating large-scale synthetic
child facial data using advanced data augmentation methods.
This is achieved by fine-tuning StyleGAN?2 [2] for generating
photo-realistic child data samples. This new synthetic child
dataset is referred to as ChildGAN [5].

A. Training Methodology

StyleGAN2 is fine-tuned by using a transfer learning-
based methodology. Transfer learning on GANs is a powerful
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technique, especially when there are limited amounts of data
and computational resources. It allows us to leverage the
knowledge and representations learned by pre-trained CNN
models and adapt them for new tasks and domains. For this
study, we have trained the adapted StyleGAN2 model using a
synthetic child dataset as the seed data. The original seed data
is taken from adult data samples and is transformed using
various algorithms, including GANs and Android-based
mobile apps that create a child facial image from an input adult
image. The overall process involves the fine-tuning of the
StyleGAN2 generator, and discriminator, by using an
adversarial training methodology. The complete training
method is detailed in the work of [5].

B. Dataset and Quality Checks

We assess the quality of the synthetic data by employing
various computer vision methods, ensuring the excellence
and detail of the facial features in the generated data. To
accomplish this, we utilize a combination of qualitative and
quantitative metrics. These metrics encompass essential tests,
such as face localization and facial landmark detection using
the DLIB framework. Another crucial assessment involves
the computation of the cosine similarity index, facilitated by
ArcFace [6], to measure the similarity in identity among
synthetic child faces. Additionally, we validate the quality of
the artificial child faces for downstream applications by
conducting tests with child gender classifiers, allowing us to
evaluate the performance of these classifiers on real data [5].
In Fig. 1, we present a visual representation illustrating
synthetic facial data featuring both boys and girls, generated
through the ChildGAN network.

Fig. 1. Four distinct child facial samples of boys and girls generated from
ChildGAN by finetuning StyleGAN2 with latent space editing.

C. Facial Transformations and Tools

The rendered synthetic data is further transformed to
incorporate various smart transformations that can be used for
diversified real-world computer vision applications. This is
achieved by using the latent space editing feature in
StyleGAN2. These transformations include eye blinking
effects, age progression, directional lighting conditions
covering different facial angles, facial expressions, head pose
variations, and lastly hair and skin tone digitization. The
complete dataset along with pretrained models are open
sourced which can be used for more extensive data generation,
further experimental analysis, and other related downstream
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tasks. Fig. 2 shows two different smart data transformations
done via latent space editing [8] and relighting [7] based deep
learning networks.

Fig. 2. Rendered child facial data with further advanced data augmentation
results. The first row shows neutral to happy facial transformation on the
generated girl subject and the second row depicts four directional lighting
conditions embedded via [6] on the sample boy subject.

III. SYNTHESIZING CHILDREN’S VOICES

Employing Cleese-based pitch augmentation [9],
FastPitch TTS [10], and Tacotron2 TTS [11] for generating
synthetic child speech holds immense potential for research
applications. Cleese-based pitch augmentation allows for
precise control over pitch contours, enabling the creation of
highly realistic child voices with varying age and gender
characteristics. FastPitch and Tacotron2, as cutting-edge TTS
models, ensure the conversion of text into natural and
expressive child-like speech. By leveraging synthetic data,
researchers can conduct experiments without ethical
concerns associated with using real child participants, while
also ensuring reproducibility and standardization.

A. Text-to-Speech Child Voice Synthesis using Tacotron 2

The multi-speaker TTS model [12] consists of three
distinct neural network models, each addressing a specific
subtask: the Speaker Encoder for speaker verification, the
Acoustic model for spectrogram synthesis, and the
WaveRNN Vocoder for audio waveform generation.

The Speaker Encoder is trained using a combination of
adult and child speech data from various datasets. It utilizes
the Generalized End-to-End (GE2E) [13] loss to generate
fixed-dimensional speaker embeddings. These embeddings
enable the model to effectively distinguish between different
speakers, allowing for better generalization across various
voices. During training, complete utterances are segmented
into partial utterances of 1.6 seconds, and the encoder is
optimized over GE2E loss to ensure similar voices are
mapped closer together in a latent space representation.

The Tacotron 2 Acoustic model [11], originally designed
for single-speaker TTS, is adapted for multi-speaker
functionality by incorporating the speaker embeddings
alongside the text embeddings. The model is first trained with
adult speech data and then fine-tuned with child speech data.
The combination of speaker and text embeddings enhances
the model's capability to generate spectrograms from input
text conditioned on the specific speaker identity.

For audio waveform generation, the researchers employ
the WaveRNN Vocoder [14], an improvement over the
WaveNet model. WaveRNN is particularly chosen for its
ability to perform sequential modeling of audio from mel-
spectrograms. It utilizes a Gated Recurrent Unit (GRU) to
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replace convolutions used in WaveNet [15], reducing
sampling time while maintaining high output quality. The
vocoder is trained on adult speech data and proves to be
effective even with unseen speakers in multi-speaker models.

The proposed approach exhibited promising results in
generating high-quality synthetic child voices which was
verified using various subjective and objective evaluations.

B. Augmentation Techniques for Adult Voices

To generate synthetic child-like speech data from existing
adult speech, a python-based sound manipulation toolkit
known as Combinatorial Expressive Speech Engine
(CLEESE) [9] is used to augment the adult speech data to
make them closer to child voices. A d-vector based speaker
encoder is used to compare the adult speaker embeddings to
the mean child embedding to select the adult speakers most
similar/proximate child speakers for the augmentation based
on the cosine similarity metric. Specifically, the pitch and
speaking rate of the selected adult speakers are raised and
slowed down through the CLEESE pitch-shift and time-
stretch transformations respectively, causing them to sound
more child-like.

Objective and subjective (Mean Opinion Score (MOS))
evaluations performed showed that the Cleese-based
augmentation approach successfully tuned the adult voices to
sound child-like; however, due to the adult linguistic content
and the absence of child-like prosodic features such as long
pauses and "stammering", the augmented speech lacked the
naturalness of real child speech. The evaluations also
revealed that adult female speakers generally provided a
better starting point for the augmentations as compared to
adult male speakers. Overall, the average MOS score of 3.7
was reported for how convincing the augmented speech
samples are as child speech and 4.6 for how intelligible the
augmented speech is, for the best set of augmentation
parameters. The work has been submitted to the IEEE
ACCESS journal and is currently in the review process. In
future work, we plan to improve the time-stretch
transformation (speaking rate augmentation) in addition to
modeling the child-like prosody and other paralinguistic
features as part of the current augmentation approach; this is
expected to improve the similarity between augmented
speech and real child speech.

C. Using FastPitch to Synthesize Child Voices

A transfer learning pipeline is used for generating
synthetic child voices using the Fastpitch TTS [10] model.
The process involves pretraining the model with the LibriTTS
[16] dataset, which includes diverse adult speech data. Then,
the model is fine-tuned on a small subset of child speech data
(MyST dataset [17]) to capture the acoustic properties and
pitch contours specific to child speech. The finetuning
pipeline is consistent with previous approaches using
Tacotron 2 [11]. The vocoder used for generating high-
quality speech waveforms is WaveGlow, which operates
based on a generative flow-based model architecture. The
WaveGlow [18] model is trained on the LibriTTS adult
speech data and is employed as a universal vocoder for
synthetic child voices.

Objective  evaluations on the naturalness and
intelligibility of the generated speech are conducted,
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comparing the Fastpitch model's performance with Tacotron
2 [11] for child speech synthesis. Moreover, speaker
similarity verification using a pretrained speaker verification
system shows that the synthetically generated child speech is
close to real speech in terms of speaker similarity. This
methodology successfully synthesizes realistic child voices,
and the experimental results support the effectiveness of the
Fastpitch model in generating high-quality synthetic child
speech.

IV. SYNTHETIC TALKING HEAD GENERATION

Talking head generation presents a multitude of intricate
challenges, including the precise synchronization of lip
movements with speech, the maintenance of natural facial
expressions throughout the animation process, and the overall
cohesiveness of facial dynamics with the spoken content.
Additionally, issues related to data quality, articulatory
variation across different speakers, and achieving a high
degree of realism in the generated faces are all formidable
hurdles in this domain. These hurdles are further amplified
when trying to generate synthetic child data, as children's
speech and facial expressions exhibit unique characteristics
and idiosyncrasies that demand specialized handling.
Children's facial features and articulatory patterns differ
significantly from those of adults, making it essential to tailor
the synthesis process to capture these nuances accurately.
Ensuring the generated child faces are both age-appropriate
and realistic adds an extra layer of complexity to the task.

Existing talking head generation approaches often
overlook these specific challenges, primarily because they are
predominantly trained on adult data. Consequently, adapting
such models for child-focused applications presents an open
challenge in the field. The need to address the distinct
nuances of child speech and facial expressions, while also
maintaining the integrity of age-appropriate visual
representations, underscores the gap that our research aims to
highlight. With that in mind, it must be made clear that while
our research does not explicitly tackle the unique issues
associated with child-specific talking head generation, it
serves as a foundational step toward exploring the potential
of synthesizing child faces in this context.

In the current work, our focus is primarily on leveraging
established techniques to create a synthetic dataset that can
potentially catalyze further investigations and innovations in
the field, paving the way for more specialized solutions to
address the intricacies of child-focused talking head
generation.

A. Rendering the Synthetic Talking Child Faces

MakeltTalk [4] is a structural-based talking head
generation approach that works by generating a sequence of
sparse 3D facial landmarks given a driving audio signal as
input, followed by an image-to-image translation-based
rendering step that generates realistic video frames from the
landmark sequence and an input “seed” image. Two models
are used to accomplish this, an audio-aware LSTM-based
model for generating landmark sequences time-aligned to the
input audio signal, and a Pix2Pix-based image rendering
network.
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In theory, any recent talking head generation model can
be used for this step, however, we chose to use MakeltTalk
[4] as it displayed remarkable robustness when exposed to
synthetic voice data as input. We theorize that this can be
attributed to how MakeltTalk handles audio input.
Specifically, it adopts a process that disentangles the input
speech into two distinct latent representations: a content
embedding and a speaker ID embedding. This appears to
bolster the model's adaptability and its ability to generate
accurate and contextually relevant facial landmarks, making
it an ideal choice for our use case.

In total, we generate and provide 20 synthetic child-
speaking videos comprising of both boy's and girl’s facial
samples, each wuniquely characterized by identities
meticulously crafted through the ChildGAN model, and
speech samples synthesized in accordance with the detailed
process outlined in Section III. A high-level overview of this
pipeline is depicted in Fig. 3.
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Fig. 3. Block diagram representing the pipeline adapted for generating 3D
synthetic child speaking clips.

FastPitch TTS
based Child Voice
Synthesizer

These synthetic videos display the capabilities of our
synthesis pipeline. By offering this framework, we aim to
facilitate a deeper understanding of child-like facial
expressions and their correlation with speech, while also
providing a valuable resource for researchers across various
fields. Furthermore, we make all code, and scripts associated
with this research publicly available.

B. Evaluating Synthetic Videos

We have abstained from presenting a formal evaluation of
the synthetic videos we provide in this study. The rationale
behind this decision is rooted in the fact that the videos we
generate using our pipeline share a similar nature with those
produced by MakeltTalk, which serves as a fundamental
component of our methodology. Since MakeltTalk is a well-
established framework for talking head generation with a
recognized set of evaluation metrics and benchmarks, it
offers a reliable reference point for the assessment of
synthetic videos generated through our approach.

For a comprehensive and in-depth analysis of the specific
characteristics, quality, and performance of the videos
created by MakeltTalk, we recommend referring to the
original source and related research work. MakeltTalk's
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creators have conducted thorough evaluations and validations
of their generated content, and their findings provide valuable
insights into the capabilities and limitations of the
framework. Thus, readers interested in a detailed examination
of the video output and the intricacies of the MakeltTalk-
generated content are encouraged to explore the relevant
sections of the MakeltTalk research literature, where a wealth
of pertinent information can be found.

Furthermore, it's crucial to highlight the flexibility
inherent in our framework. This adaptability goes beyond
being confined to a single talking head generation method,
providing users with the freedom to integrate a diverse array
of methods into their workflow. While MakeltTalk serves as
a fundamental component of our research and has
demonstrated its effectiveness, our framework is
intentionally designed to accommodate a wide range of state-
of-the-art talking head generation approaches.

This versatility translates into expanded opportunities for
researchers and practitioners in the field. They are not limited
solely to using MakeltTalk but have the flexibility to explore,
experiment with, and incorporate alternative methods that
align with their specific research goals and requirements. By
detaching our framework from reliance on a single method,
we empower the research community to harness the full
spectrum of innovations and advancements in talking head
generation. This, in turn, fosters a more dynamic and diverse
landscape of possibilities in multimedia content creation,
human-computer interaction, and other related domains.

V. SUMMARY OF RESULTS

The complete experimental analysis was performed on a
workstation machine equipped with a XEON E5-1650 v4
3.60 GHz processor, 64 GB of RAM, and 2 GEFORCE RTX
2080 graphical processing units each of which has 12 GB of
dedicated graphical video memory, memory bandwidth of
616 GB/second, and 4352 cuda cores.

A. Synthetic Single 2D Child Imaging Facial Data Results

In the first phase of the experimental analysis, we used
distinct boys’ and girls’ facial data samples which were
shortlisted from one of our previous works where we used
StyleGAN to tune ChildGAN [4] models for rendering large-
scale child synthetic data. Fig. 4 shows some of the child
facial samples rendered using the ChildGAN model. Whereas
Fig. 5 shows the face localization and 68 facial landmarks
detection results on generated synthetic child data using the
Dlib library.

B. Child Speech Synthesizer Results

The second part includes generating child audio clips
using FastPitch architecture. For now, we have written small
text sentences which were then used as input feed data for the
FastPitch model. Some of these are as below.

1. “It’s raining so we will plan some other day”.

2. “Overwhelming majority of people in this country
know how to discern and differentiate between
what they hear and what they read”.
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3. “London has become one of the most ethnically
diverse cities in the world with over 300 languages
are spoken in Greater London”.

' )
Fig. 4. Generated synthetic child facial subjects, LHS: tweﬁve distinct frontal
face samples of boys, RHS: twelve distinct frontal face samples of girls.

Fig. 5. Face localization and facial landmark detection on ChildGAN data.

Fig. 6 shows the waveform plot of text (“It’s raining so we
will plan some other day”) to audio generated file using
Fastpitch TTS synthesizer text which is generated in the
boy’s audio voice. The audio is plotted with a 2000 maximum
number of sampling points.
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Fig. 6. Audio file plot of the synthesized voice-over of boy generated using
Fastpitch TTS.

As mentioned in Section IV-B the generated synthesized
voices are further processed by performing a down-sampling
operation using the Python librosa library. Fig. 7
demonstrates the graph plot of the original audio WAV file
and down-sampled to 16khz audio file.
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Fig. 7. Downsampled audio WAV file output (“It’s raining so we will plan
some other day”) with a time duration of 3.5 seconds, sample rate of 16000
Hz, and bit rate of 256 kbps.

C. Single 2D Facial Image to Talking Child Results

The last phase of the experimental results demonstrates
the speaking children videos which are rendered using a
single 2D RGB frame and driving audio input. Since this
work is in the initial phases now, we have rendered outputs
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of 20 different child subjects. The synthetic speaking children
results along with tuned ChildGAN models used are available
on our GitHub repository: https:/github.com/MAli-
Faroog/Synthetic-3D-Speaking-Children. Fig. 8 shows the
selected frame-by-frame results extracted from a rendered
speaking child video.

Frames | | Fame22 | | FrameS6 |

el de dededel

Fig. 8. Five different speaking child video frames of a single subject with
their respective histograms.

Frame 1 1 Frame 3 Frame 5 ‘ |

The second row of Fig. 8 shows the graphical representation
of pixel color distribution present in each digital frame which
is different from other frames due to continuous lip and eye
movement action. Fig. 9 shows the facial landmarks along
with varying facial angles of six different facial frames
extracted from taking face video results of a similar subject.

D. Subjective Evaluation of Rendered 3D Child Video Data

The quality of rendered data was further evaluated using
human subjective evaluation. For this purpose, we have taken
the opinions of six participants from our research group by
asking them the following questions.

1. Do you agree that the visual quality of the rendered
synthetic child video is good?

2. Do you agree that the audio in the video, including
speaker similarity, prosody, and audio quality is
good?

3. Do you agree the overall video is of natural quality
and sharp?

Among this five participants provided the positive response
in favor of 1% and 3" questions whereas four participants
agreed with question 2. Thus, on average we got a 75%
percent positive response ratio from human evaluation.

VI. CONCLUSION AND FUTURE WORK

Our goal in this work has been to demonstrate the potential
of synthetic data for replacing “real-world” data in the
particular context of a smart-toy platform. To this end, we
have combined several advanced data synthesis techniques to
provide a working pipeline for speech-driven animated facial
training data samples. While this work is still in its early
stages the resulting data samples are convincing, capturing
realistic facial features such as synchronized lip and jaw
movements and eye blinking. Future work will include
quantitative evaluation of the uniqueness of the seed facial
data samples, improvements in the quality and number of
individual speaker embeddings, and improved controllability
of the speech generator (e.g. emotional speech embeddings),
and further improvements in the quality and controllability of
the facial animations. We are also exploring the addition of a
diffusion model to the generator for seed facial samples that
will allow specific ethnicities, hairstyles, and facial
characteristics to be generated.
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